

SAINT2

System Analysis Interface Tool 2

Emulation User Guide

Version 2.5

May 27, 2010

Copyright © Delphi Automotive Systems Corporation 2009, 2010

Maintained by: SAINT2 Team
Delphi
www.saint2support.com

 2

Table of Contents

Revision Log .. 4

1 Overview ... 5

2 Important Disclaimer .. 5

3 Using the Emulator – the Basic Steps .. 5

4 Emulation System Operation.. 6

4.1 Start Execution of Emulation File ... 7

4.2 Cancel Execution of Emulation File – not yet implemented... 7

4.3 Emulation System to Host Message .. 8

4.4 Host to Emulation System Message .. 8

4.5 Error in Emulation Execution Message... 8

4.6 Emulation Status Message... 9

4.7 Emulation Variable Value Request ... 10

4.8 Return CRC of File.. 11

5 Script Requirements .. 12

6 Opcode File Requirements .. 13

7 Emulator Script Compiler Commands.. 13

7.1 Comments.. 13

7.2 Variable Declarations .. 13

7.3 Variable Assignments.. 15

7.4 Math Expressions .. 16

7.5 Conditionals (If Statements).. 17

7.6 Loops (For Statements) ... 18

7.7 Block Function .. 20

7.8 Execute a SAINT2 File.. 21

7.9 Delay.. 23

7.10 Host Communication Setting.. 23

7.11 Trigger Out Function .. 24

 3

7.12 LED Function.. 24

7.13 Transmit a Message on a Serial Bus ... 25

7.14 Receive a Message from a Serial Bus... 26

7.15 Open a Binary File .. 27

7.16 Seek through a Binary File ... 28

7.17 Read Data from a BinaryFile .. 28

7.18 Get Number of Bytes Read or Written to a Binary File ... 29

7.19 Close Binary File .. 29

8 Limits... 29

 4

Revision Log
Version Revisions Date

1.0 Initial Release of Document 3/6/09

2.0 Major Emulation System Overhaul 6/25/09

2.1 Update for RX function and status commands 8/15/09

2.2 Add file open, seek, read, getbytes, and close commands 9/10/09

2.3 Add file CRC command 2/12/10

2.4 Include note that op warning code 08 A1 01 will occur

Correct max variable declaration table

4/22/10

2.5 Add array re-init statement

 5

1 Overview
The SAINT2’s embedded emulation feature allows certain SAINT2 operations to be automated and executed with or without a

connected host PC. This document describes how to create the emulation script and how to use the emulation feature.

2 Important Disclaimer
The SAINT2 emulation system is in development. Changes may be made to the syntax and function of these commands and

backward compatibility may NOT be supported in future firmware releases.

3 Using the Emulator – the Basic Steps
The following steps describe the process that should be followed to use the SAINT2 emulation feature:

1. The user creates the emulation script file using a text editor such as Notepad.

2. Using the Emulator Script Compiler application, the user “compiles” the emulation script file into an emulation opcode file.

3. If the emulation should automatically execute after a SAINT2 reset, the opcode file must be named emulator.txt.

4. Copy the opcode file and any other files being accessed during emulation execution to the SD card root directory.

5. Reset the SAINT2.

6. If the opcode file on the SD card is named emulator.txt it will begin to execute.

7. If the opcode file is not named emulator.txt, send the defined command from the host PC to execute the opcode file.

8. Monitor the LEDs on the SAINT2 to determine if the emulation executed successfully.

9. Check the emulation response to the host PC to debug emulator errors.

 6

To ensure that emulation works properly, the Emulator Script Compiler application must be used with compatible SAINT2 firmware.

The Emulator Script Compiler’s compatible firmware versions can be found in the Compiler’s About Box. It is highly recommended

that both the compiler application and SAINT2 firmware be kept up to date.

4 Emulation System Operation

• If the file, emulator.txt, resides on the root of the SD card, the SAINT2 will execute that file upon power up or reset.

• Specific emulation files can be commanded to execute from the host pc using a SAINT2 configuration message.

• Emulation specific messages can be communicated between the host PC and the emulation function using a SAINT2

configuration message (if host communications are enabled.)

• The SAINT2 provides feedback about the execution of the emulation using its LEDs

o The PWR LED will flash at a 2Hz rate to indicate that the SAINT2 is operating.

o LED3 (green) will be turned on solid when the emulation script has been executed without error.

o LED4 (amber) on indicates that the SD card is currently being accessed.

o LED5 (amber) on indicates that there has been an operational warning code set. See the Programmer’s Reference for

op warning code definitions. At this time – YOU WILL HAVE OP WARNING CODE 08 A1 01. You will not be

able to operate without setting this code.

o LED6 (red) will be turned on solid when the emulation script has encountered an execution error. If there is an

execution error, an error code will be sent to the host PC. Also, the user may command LED6 to be turned on or off in

order to indicate a condition in the emulation script.

 7

Host / Emulation Interface Messages
SAINT2

header

Emulation

Config ID

ID Description

08 50 00 Start execution of emulation file

08 50 01 Cancel execution of emulation file – not yet implemented

08 50 02 Message sent from emulation to host

08 50 03 Message sent from host to emulation

08 50 04 Message indicating an error in emulation execution

08 50 05 Emulation Status Request

08 50 06 Request emulation variable value

08 51 Return CRC of file

4.1 Start Execution of Emulation File
This command starts the execution of the emulation file specified in the command. For now, use all capital letters in the command.

Host to SAINT2 request: 08 50 00 XX XX … XX
Data Byte Description

XX XX Emulation filename in ASCII (capital letters, 8.3 format)

SAINT2 response: 08 50 00 XX XX … XX
Data Byte Description

XX XX Emulation filename in ASCII (capital letters, 8.3 format)

4.2 Cancel Execution of Emulation File – not yet implemented
This command stops the execution of the emulation file.

Host to SAINT2 request: 08 50 01

SAINT2 response: 08 50 01

 8

4.3 Emulation System to Host Message
Messages that are sent from the emulation script to the host PC should have the following format so that they do not interfere with other SAINT2
functions.

Emulation to Host message: 08 50 02 XX XX … XX (total message may be up to 63 bytes long)

4.4 Host to Emulation System Message
Messages that are sent from the host to the emulation script must have the following format.

Host to Emulation message: 08 50 03 XX XX … XX (total message may be up to 63 bytes long)

4.5 Error in Emulation Execution Message
This message indicates that there has been an error in the emulation execution.

SAINT2 to Host message: 08 50 04 XX XX YY YY ZZ
Data Byte Description

XX XX Script Block in which error occurred (starting with 1)

YY YY Opcode line in the defined block on which error occurred (starting with 1 in opcode file.)

ZZ Error Value Description

0x01 Undefined SD card error

0x02 No such file or directory – SD card

0x05 I/O Error – SD card

0x09 Bad file number – SD card

0x0D Permission denied – SD card

0x11 File Exists – SD card

0x13 No such device – SD card

0x16 Invalid Argument – SD card

0x18 Too many files open – SD card

0x1C No space left on device – SD card

0x1E Read only file system (Sharing error) – SD card

0x21 Emulation script file is incomplete

 9

0x22 Script file syntax error – line read with no legal characters

0x23 Script file syntax error – line exceeds maximum length

0x24 The number of opcodes in a block has exceeded the limit

0x25 Error in operand 1

0x26 Error in operand 2

0x27 Error in operand 3

0x28 Error in operand 4

0x29 Error in Opcode

0x2A The number of files referenced in a block has exceeded the limit

0x2B Error writing to transmit buffer – run time

0x2C Message length exceeds SAINT2 limit

0x2D Script is attempting to open too many files at one time

4.6 Emulation Status Message
This message requests the current status of the emulation execution.

Host to SAINT2 request: 08 50 05

SAINT2 to Host Response: 08 50 05 XX XX YY YY VV ZZ
Data Byte Description

XX XX Script Block in which error occurred (starting with 1)

YY YY Opcode line in the defined block on which error occurred (starting with 1 in opcode file.)

VV Status Value Description

0x00 Emulation is not currently running

0x01 Emulation is running
ZZ Error Value Description

0x01 Undefined SD card error

0x02 No such file or directory – SD card

0x05 I/O Error – SD card

0x09 Bad file number – SD card

0x0D Permission denied – SD card

0x11 File Exists – SD card

 10

0x13 No such device – SD card

0x16 Invalid Argument – SD card

0x18 Too many files open – SD card

0x1C No space left on device – SD card

0x1E Read only file system (Sharing error) – SD card

0x21 Emulation script file is incomplete

0x22 Script file syntax error – line read with no legal characters

0x23 Script file syntax error – line exceeds maximum length

0x24 The number of opcodes in a block has exceeded the limit

0x25 Error in operand 1

0x26 Error in operand 2

0x27 Error in operand 3

0x28 Error in operand 4

0x29 Error in Opcode

0x2A The number of files referenced in a block has exceeded the limit

0x2B Error writing to transmit buffer – run time

0x2C Message length exceeds SAINT2 limit

0x2D Trying to open too many files at one time

4.7 Emulation Variable Value Request
This message can be used to request the value of any of the emulation variables that have been declared in the emulation script. This request
may be sent during or after emulation execution.

Host to SAINT2 request: 08 50 06 XX YY [ZZ]

Emulation Variable Value Message Response: 08 50 06 XX YY [ZZ] VV VV VV VV …
Data Byte Description

XX Variable Type Description

0x00 uint8_t

0x01 int8_t

0x02 uint16_t

0x03 int16_t

 11

0x04 uint32_t

0x05 int32_t

0x06 uint8_t array
YY Index of variable in order of declaration with respect to variable type (starting with 1)

ZZ optional: array element at which to begin reporting array data (beginning of array is at element 0)

VV VV VV VV variable or array bytes – all variables will be reported as a 4 byte value, up to 57 array bytes will be reported

Example:

uint8_t ubyte1 = 0x11 //send 08 50 06 00 01 to get value

uint8_t ubyte2 = 0x22 //send 08 50 06 00 02 to get value

int8_t byte1 = 0xF1 //send 08 50 06 01 01 to get value

uint8_t array1[7] = 0102030405 //send 08 50 06 06 01 00 to get value

uint32_t uword1 = 0xAABBCCDD //send 08 50 06 04 01 to get value

send 08 50 06 00 01 � response 08 50 06 00 01 00 00 00 11

send 08 50 06 00 02 � response 08 50 06 00 02 00 00 00 22

send 08 50 06 01 01 � response 08 50 06 01 01 FF FF FF F1

send 08 50 06 06 01 00 � response 08 50 06 06 01 00 01 02 03 04 05 00 00

send 08 50 06 04 01 � response 08 50 06 04 01 AA BB CC DD

4.8 Return CRC of File
This command returns the CRC of a file. For now, use all capital letters in the command.

Host to SAINT2 request: 08 51 XX XX … XX
Data Byte Description

XX XX Emulation filename in ASCII (capital letters, 8.3 format)

SAINT2 response: 08 51 00 YY YY YY YY or 08 51 EE ZZ

 12

Data Byte Description

YY YY YY YY 32 Bit CRC of file

ZZ Error Value Description

0x00 Emulation is executing or CRC calculation is executing

0x01 Undefined SD card error

0x02 No such file or directory – SD card

0x05 I/O Error – SD card

0x09 Bad file number – SD card

0x0D Permission denied – SD card

0x11 File Exists – SD card

0x13 No such device – SD card

0x16 Invalid Argument – SD card

0x18 Too many files open – SD card

0x1C No space left on device – SD card

0x1E Read only file system (Sharing error) – SD card

0x20 Buffer is busy

5 Script Requirements

• Script keywords, variables, commands, and arguments are case insensitive.

• Spaces and Tabs will be ignored

• Any referenced file must be placed on the SD root so no path is necessary.

• Any referenced file name must follow the 8.3 naming format.

• Numbers entered with a “0x” will be interpreted as hex values

• Comments are identified using a proceeding “//”.

• A long script may be broken into multiple script “blocks”. A single block is read into the memory of the SAINT2 firmware

and executed. When the execution is complete, the next block will be read and executed. Since this is the case, looping and

conditionals must be fully contained in a single block. There is no limit, other than the SD card size, that limits the number of

blocks in a script.

 13

6 Opcode File Requirements

• The opcode file name must follow the 8.3 naming format.

• The opcode file must be saved on the SD card root.

7 Emulator Script Compiler Commands

7.1 Comments

Comments are identified with a “//”

Example:

// create transmit message

7.2 Variable Declarations

uint8_t varname to declare an unsigned 8 bit value (0 to 255)

int8_t varname to declare a signed 8 bit value (-128 to 127)

uint16_t varname to declare an unsigned 16 bit value (0 to 65535)

int16_t varname to declare a signed 16 bit value (-32768 to 32767)

uint32_t varname to declare an unsigned 32 bit value (0 to 4294967295)

int32_t varname to declare a signed 32 bit value (-2147483648 to 2147483647)

uint8_t varname[size] to declare an array of uint8_t

 14

uint8_t varname = value to declare an unsigned 8 bit value (0 to 255)

int8_t varname= value to declare a signed 8 bit value (-128 t0 127)

uint16_t varname = value to declare an unsigned 16 bit value (0 to 65535)

int16_t varname = value to declare a signed 16 bit value (-32768 to 32767)

uint32_t varname = value to declare an unsigned 32 bit value (0 to 4294967295)

int32_t varname = value to declare a signed 32 bit value (-2147483648 to 2147483647)

uint8_t varname[size] = arraystring to declare an array of uint8_t

Variable Type Maximum Declarations

uint8_t 20

int8_t 5

uint16_t 20

int16_t 5

uint32_t 20

int32_t 5

uint8_t arrays 20

Item Requirements Maximum Value

length of variable name (varname) may include alpha-numerics and “_”; must begin with

an alpha-numeric, case insensitive

40 characters

size must be a constant 522 bytes

memory allocated for arrays 522 bytes

max characters of array initial value (arraystring) string of hex byte values 1044 characters

Notes:

• Variables must be declared before they are used

• Variables should be considered global.

• Array memory allocation may be reset at the beginning of a new script block.

• Initial variable values may be assigned on the same line as the declaration.

• Arrays must be declared at the beginning of a script block.

 15

Example:

uint8_t num1 = 40 //num1 is assigned to 40

int8_t num2 //num2 is not assigned a value

int8_t num3 = 0x10 //num3 is assigned to 0x10 (16 decimal)

uint 8_t array1[7] = 0102030405 //array1 will contain the following values 0x01, 0x02, 0x03, 0x04, 0x05, 0x00, 0x00

7.3 Variable Assignments

varname = value assign a value to a variable

arrayname[element] = value assign a 1 byte value to an element in an array

varname = expression assign the result of an expression to a variable

arrayname[element] = expression assign the result of an expression to an element in an array

varname = other_varname assign the value of a variable to another variable

varname = arrayname[element] assign the value of an element in an array to a variable

arrayname[element] = varname assign the value of a variable to an element in an array

arrayname[element] = other_arrayname[other_element] assign the value of an element in an array to a another element in another

array

uint8_t varname[original size] = arraystring assign a new initialization string to a previously declared array – THIS

CAN ONLY BE USED AT THE BEGINNING OF A BLOCK BEFORE

ANY EXECUTABLE STATEMENTS

Item Minimum Value Maximum Value Definition

element, other_element 0 size - 1 (declared array size) may be a value, variable, or

expression

Notes:
• Any variable assigned must have been previously declared at the beginning of the script block.

• Assignments greater than variable declaration size will be rolled over without throwing an error.

• One assignment is allowed per line.

 16

• Assignments expect a variable on the left and an expression on the right of the equal sign.

Example:

uint8_t num1

int8_t num2

num1 = 255 // num1 is assigned 255 (normal)

num1 = 256 // num1 is assigned 0 (wrapped)

num2 = 128 // num2 is assigned -128 (wrapped)

7.4 Math Expressions

Math Expressions allow the value of a variable to be set based on math operations of a combination of values and variables.

Operators Definition

+ addition

- subtraction

& bitwise AND

| bitwise OR

^ bitwise XOR

~ 1’s complement

++ increment

-- decrement

>> bit shift right

<< bit shift left

* multiplication

/ division

% modulo

 17

Notes:
• Multiple math operations on one line will be interpreted in the order they are typed. Standard order of operations are not

currently supported.

Example:

uint8_t num1

int8_t num2

num1 = num2++

num2 = num1 – 6

num1--

7.5 Conditionals (If Statements)

Conditionals consist of two expressions joined by a conditional operator. Also, a conditional evaluation may be performed on an rx

statement. Conditionals may be nested.

if(<expression1> <op> <expression2>)

 <statements to execute if condition = TRUE>

else

 <statements to execute if condition = FALSE>

endif

if(rx(…..))

 <statements to execute if condition = TRUE>

else

 <statements to execute if condition = FALSE>

endif

 18

Conditional Operators:
Operators Definition

== equal

!= not equal

>= greater than or equal

> greater than

<= less than or equal

< less than

Example:

uint8_t var

if(Rx(056008FF1003, 500))

 var = 1

endif

if(var == 1)

 var = 0

 Delay(500)

else

 Delay(1000)

endif

7.6 Loops (For Statements)

Loops allows for repeated execution of statements. Loops may be infinite. Loops may contain breaks. For statements may be nested.

A break statement will cause the script to immediately exit the for loop.

 19

for(initial statement; terminating condition; repeated statement)

 <statements to execute>

exitfor

The initial and repeated statements may be any lines that could normally be in any other part of the script [barring a couple things such

as the BlockEnd function]. The terminating condition may be any normal condition that could otherwise be used in an if statement.

The parameters work almost exactly like C-syntax.

1) The initial expression is executed before any other part of the loop.

2) The terminating condition is evaluated. If it is false, execution jumps to the end of the loop.

3) Assuming the condition is true, the statements within the block are executed.

4) The repeated statement is executed.

5) Repeat steps 2 – 4 until the terminating condition becomes false.

All three of the parameters are optional, but both of the semicolons must remain. Leaving out the terminating condition creates an

infinite loop.

break statement: break

Example:

for (num1 = 0; num1 < 10; num1++)

 array1[num1] = num2

 num2 = 8 + num1

exitfor

for (num1 = 0; num1 <= 6; num++)

 if (array1[num1] == num2)

 break

 end if

 20

exitfor

uint8_t loop = 0

for (Delay(500); loop < 25; loop = loop + 5)

 for(uint8_t loop2 = loop; ; loop2++)

 if(loop2 == 25)

 break

 endif

 exitfor

exitfor

7.7 Block Function

The block function may be used to separate a long script into blocks of commands.

BlockEnd([reset files]opt, [reset array]opt)

Function Argument Requirements
Argument Value Definition

reset files 0 = don’t reset file list

1 = reset file list

If the file list is reset files loaded during the previous blocks will not be

maintained in the new block.

reset array 0 = don’t reset array memory allocation

1 = reset array memory allocation

If the array memory allocation is reset, arrays used during previous

blocks will not be available for use in the new block.

Notes:

• This function may not be used within a conditional or a loop.

• The compiler will throw an error if the number of sequential opcodes exceeds the number of allowed opcodes per block.

Example:

uint8_t num1

 21

uint8_t num2

uint8_t array1[7]

uint8_num3

for (num1 = 0; num1 <= 6; num++)

 if (array1[num1] == num2)

 break

 end if

exitfor

blockend(1, 0) //reset files but not arrays

num3 = array1[4]

7.8 Execute a SAINT2 File

Execute SAINT2 config.txt or group files that have been saved on the SD card.

Config(filename)

This command executes the SAINT2 configuration file named filename. A SAINT2 configuration file is used to configure the

SAINT2 hardware. The format of this file is described in the SAINT2 Programmer’s Reference document. Note that the SAINT2

executes any group file reference by a configuration file without timing control or guarantee of synchronous execution. This command

should only be used to configure the SAINT2 hardware. It should not be used to send messages onto a serial bus, send a SWCAN high

voltage wakeup, or send any other function that requires synchronous execution or timing control.

Example:

Config(conf.txt) // configures the SAINT2 with “conf.txt”

 22

Group(filename)

This command executes the group file named filename. A SAINT2 group file contains a list of messages and an associated delay from

the previous message. The delay must be a 4-digit decimal value in milliseconds from the previous message. The message must follow

the SAINT2 Programmer’s Reference format (i.e., the message must include the SAINT2 header byte). Group files may be used to

send any message (within the allowable length) that may be sent from the host PC to the SAINT2.

Example:

Group(grp.txt) // executes group file “grp.txt”

Group File Example:

0000 54 01 8D AF // set baud rate to 33k

0010 54 04 02 // set transceiver to SWCAN after 10ms

0010 54 02 02 // set transceiver to high voltage mode after 10ms

0010 50 01 00 // send high voltage wakeup after 10ms

0020 54 02 03 // set transceiver back to normal mode after 20ms

Function Argument Requirements
filename up to 8 character name, up to 3 character extension

Notes:

• The compiler should throw an error if the file name doesn’t meet the requirements.

• The compiler should throw an error if the maximum number of files loaded is exceeded.

 23

7.9 Delay

Pauses the SAINT2 execution of the emulation script for time in ms.

Delay(time)

Function Argument Requirements
argument allowable values

time 0 - to 4294967295ms

Example:

delay (2000) //delay 2 seconds

7.10 Host Communication Setting

This command turns the SAINT2 communication with a host PC off or on.

OpMode(mode)

Function Argument Requirements
Argument Value Result

mode 0x00 all host communication off

mode 0x03 turn RS232 communication on / USB communication off

mode 0x0C turn USB communication on / RS232 communication off

mode 0x0F turn both RS232 and USB communication on

Example:

Opmode(0x00) //turn all host communication off

 24

7.11 Trigger Out Function

This command sets the output state on the SAINT2’s trigger out pin.

Trigger(active)

Function Argument Requirements
Argument Value Result

active 0 TRIGOUT = 0V

 1 TRIGOUT = 5V

Example:

trigger(1) //set trig out to 5V

7.12 LED Function

This command sets the status of LED 6 on the SAINT2.

SetLed(active)

Function Argument Requirements
Argument Value Result

active 0 LED = off

active 1 LED = on solid

Example:

 25

setled(1) //turn led 6 on

7.13 Transmit a Message on a Serial Bus

This command may be used to transmit a message onto a serial bus or to the host PC.

tx(msgstring)

tx(arrayname)

Function Argument Requirements
Argument Requirement Description

msgstring 2 to 128 characters a string of bytes representing the serial message to transmit

arrayname must be previously declared array that contains the serial message to transmit

Notes:

• The first byte of a message array must indicate the length of the message including the SAINT2 header byte.

• When the message is entered as a msgstring the length byte will be calculated by the script compiler.

• The second byte of the message array will define what serial bus is being used to transmit the message by using the SAINT2

header byte.

Example:

uint8_t txmsg[12] = 11 50 01 22 11 22 33 44 55 66 77 88 //define a SAINT2 format CAN message

tx(txmsg) //transmit the CAN message

tx(60112233445566778899AABBCC) //transmit a class2 message

 26

7.14 Receive a Message from a Serial Bus

This command may be used to command the emulation to wait a given time to receive a message from a serial bus.

rx(cmpstring, wait, [rxarray]opt)

rx(cmparray, wait, [rxarray], [maskstring]opt)

rx(cmparray, wait, [rxarray], [maskarray]opt)

Function Argument Requirements
Argument Requirement Description

cmpstring 2 to 128 characters a string of bytes representing the serial message to compare to the received message

wait 0 - to 4294967295ms time to wait for received message

rxarray must be previously declared array used to store the received message that matches the compare array or string

maskstring 2 to 128 characters a string of bytes to use for masking the serial message to compare to the received message

maskarray must be previously declared an array used for masking the serial message to compare to the received message

Notes:

• The use of a preceding 0x to indicate hex is not allowed in the message strings. Characters are assumed to represent hex bytes.

• In cmpstring “X” is used for a don’t care nibble.

• The first byte of a message array must indicate the length of the message including the SAINT2 header byte.

• The second byte of the message array will define what serial bus is being used to receive the message

Examples:

Example 1 :

uint8_t rxmsg[13]

if(rx(50 01 22 XX X1 0X 56, 2000, rxmsg)) //Xs may be used for don’t care nibbles

…

endif

 27

Example 2 :

uint8_t cmpmsg[7] = 06500122002056 //don’t cares are not allowed in messages expressed in an array

uint8_t rxmsg[13]

rx(cmpmsg, 2000, rxmsg, FFFFFF0029FF) //use the mask string for don’t cares

Example 3:

uint8_t cmpmsg[7] = 06500122002056 //define the compare array

uint8_t rxmsg[13]

uint8_t cmpmask[7] = 06FFFFFF0029FF //define a mask array for don’t cares

if (rx(cmpmsg, 2000, rxmsg, cmpmask))

 …

endif

7.15 Open a Binary File

Opens a Binary File on the SD card to read, write or append.

fileopen(filename, type)

Function Argument Requirements
filename up to 8 character name, up to 3 character extension

max number of files referenced in the block EMU_MAXFILES

max number of open files at one time SDNUSERFILES - 2

Argument Value Description

type 0 open a binary file to read

type 1 open a binary file to write

 28

type 2 open a binary file to create or append

7.16 Seek through a Binary File

Sets the file pointer at an offset from the specified file location.

fileseek(filename, offset, whence)

Function Argument Requirements
filename up to 8 character name, up to 3 character extension

max number of files referenced in the block EMU_MAXFILES

Argument Value Description

offset 0 to 4294967295 bytes number of bytes of offset from the file location specified by whence

whence 0 offset from beginning of the file

whence 1 offset from current location of the file pointer

whence 2 offset back from the end of the file

7.17 Read Data from a BinaryFile

Read a specified number of data bytes from a binary data file starting at the current file pointer location.

fileread(filename, arrayname, array_element, varname,)

Function Argument Requirements
filename up to 8 character name, up to 3 character extension

max number of files referenced in the block EMU_MAXFILES

Argument Acceptable Values Description

 29

arrayname any previously declared array the name of the array that will be used to store data read from the file

array_element 0 to size of arrayname the element in the array in which to save the first data byte read from the file

varname a variable containing a value from

1 to (size – array_element)

number of bytes to read from the file into the specified array

7.18 Get Number of Bytes Read or Written to a Binary File

Store the number of bytes read or written to a binary file in the previous read or write to a variable.

getbytecount(varname)

Function Argument Requirements
varname previously declared variable

7.19 Close Binary File

Closes a file that has been opened on the SD card.

fileclose(filename)

Function Argument Requirements
filename up to 8 character name, up to 3 character extension

max number of files referenced in the block EMU_MAXFILES

8 Limits

Miscellaneous Limits
Description Value

Number of uint8_t declarations allowed 20

 30

Number of int8_ t declarations allowed 5

Number of uint16_ t declarations allowed 20

Number of int16_ t declarations allowed 5

Number of uint32_ t declarations allowed 20

Number of int32_ t declarations allowed 5

Number of uint8_t array declarations allowed 20

Number of bytes available for array storage 522

Maximum number of bytes in a single array 522

Maximum number of executable opcodes in a block 100

Maximum number of files that may be referenced in a block 7

Maximum number of files that may be opened at one time 4

Number of bytes in a group file 1000

Variable name maximum length 40

Maximum TX or RX message 63 bytes

