

Aptiv Serial Data Steering Team

APTIV

Systems Analysis INterface Tool 2/3(SAINT2/3)

Programming Reference

Version 2.55

3/3/2020

Copyright Aptiv, 2006 - 2020

SAINT

Programming Reference 03/03/20 Page 1

Table of Contents

1 Introduction .. 10

1.1 Scope .. 10

1.2 Precedence ... 10

1.3 Definitions and Nomenclature ... 10

2 Overview ... 11

3 Host to SAINT Connection .. 12

3.1 RS-232 .. 12

3.1.1 RS-232 Set Up ... 12

3.2 USB .. 12

4 Message Format.. 13

4.1 Data Stream .. 13

4.2 SAINT Header Bytes .. 14

5 SAINT Configuration .. 15

5.1 SAINT Configuration Commands .. 15

5.1.1 Firmware Flash Programming (08 10h) .. 16

5.1.2 Device Enumeration (08 20h) ... 16

5.1.3 Embedded Emulation (08 50h) ... 16

5.1.4 Request an SD card file’s CRC (08 51h) .. 17

5.1.5 Set Up Periodic Message (08 70h –08 7Fh) (08 C0h-08 CFh) .. 18

5.1.6 SAINT Reset (08 80h) ... 18

5.1.7 Turn Time Stamp On and Off (08 86h and 08 87h) ... 18

5.1.8 Send Periodic Message (08 90h and 08 91h) ... 18

5.1.9 Software Version Request (08 92h) ... 19

5.1.10 SAINT Time Stamp Request (08 93) ... 19

5.1.11 Clear Operation Warning Code (08 A0h) .. 19

5.1.12 Retrieve and Report Operation Warning Code (08 A1h) ... 19

SAINT

Programming Reference 03/03/20 Page 2

5.1.13 Select Host Communication Channel (08 A2h) .. 21

5.1.14 Select Serial Bus Protocols (08 A3h) ... 21

5.1.15 Retrieve Serial Number (08 A5h) .. 21

5.1.16 Trig Out (08 A8h) .. 21

5.1.17 Trig In - 1 (08 A9h) ... 22

5.1.18 Trig In – 2 (08 ABh) .. 23

5.1.19 Manufacturing Test Command(08 BEh).. 25

5.1.20 Saint USB Test Command(08 BFh) .. 25

5.2 SAINT Configuration Reports .. 25

5.3 SAINT Configuration through SD Card .. 27

5.3.1 Configuration File Requirements ... 27

5.3.2 Configuration Instructions ... 27

5.3.3 Config.txt Example .. 28

5.3.4 Group File Example ... 28

6 CAN/CANFD Messages ... 29

6.1 CAN/CANFD Commands .. 30

6.1.1 Configuring CAN Frequency ... 30

6.1.2 Configuring CANFD Data Baud Rate ... 31

6.1.3 Single Wire Mode Control ... 32

6.1.4 Listen Only Mode Control ... 32

6.1.5 CAN Transceiver Control .. 33

6.1.6 CAN SAINT Options... 33

6.1.7 Set CANFD data baud rate .. 35

6.1.8 Set CAN ID Include Filter ... 35

6.1.9 Configuring CANFD ISO Mode (S3 only) .. 36

6.1.10 CAN FD Transmitter Delay Compensation (TDC) (S3 only) ... 36

6.1.11 Enable\Disable CAN bus termination (S3 only) .. 37

6.2 CANFD Special considerations ... 37

6.3 Constructing a CAN Transmit Frame .. 38

6.4 Constructing a CANFD Transmit Frame (Deprecated) ... 38

6.5 CAN Channel 1 Bus Flooding Function ... 39

6.6 CANFD Channel 1 Bus Flooding Function .. 41

SAINT

Programming Reference 03/03/20 Page 3

6.7 Received CAN/CANFD Frames .. 41

6.7.1 Header Description .. 43

6.7.2 CAN Frame Definition Bit Description ... 44

6.7.3 Message ID Bytes Description... 44

6.7.4 Data Bytes Description .. 44

6.7.5 Completion Code ... 44

6.7.6 1 ms Resolution 2 Byte Time Stamp ... 45

ISO15765-2 Transport Protocol on CAN/CANFD .. 46

6.8 Step 1 – Configure the SAINT ... 46

6.8.1 Enable the protocols... 46

6.8.2 Configure the CAN/CANFD channel .. 46

6.8.3 Configure the SAINT for ISO15765-2 .. 46

6.9 Step 2 – Send/Receive the ISO15765-2 message .. 50

6.10 Step 3 – Evaluate the response code .. 50

6.11 Clear the ISO15765-2 Configuration .. 51

6.12 Examples .. 52

6.12.1 Transmit Examples .. 52

6.12.2 Receive Examples .. 54

6.13 Important Notes .. 57

7 Class 2 (Saint2 only) ... 58

7.1 Class 2 Messages ... 58

7.1.1 Class 2 Commands .. 58

7.1.2 Transmitted Class 2 Messages ... 58

7.1.3 Received Class 2 Messages ... 58

8 IIC .. 61

8.1 Overview .. 61

8.1.1 IIC Hardware ... 62

8.2 IIC Commands ... 63

8.2.1 Configure IIC Master Polling .. 63

8.2.2 Set Device Address .. 64

SAINT

Programming Reference 03/03/20 Page 4

8.2.3 Get IIC Device Address ... 64

8.2.4 Set IIC Mode.. 64

8.2.5 Set IIC Baud Rate .. 64

8.2.6 Disable ACKs .. 64

8.3 IIC Data Messages .. 65

8.3.1 Request to transmit an IIC message as slave-transmitter ... 66

8.3.2 Receipt of IIC message as slave receiver ... 66

8.3.3 Request to transmit an IIC message as master-transmitter .. 67

9 Keyword 2000 ... 69

9.1 Keyword 2000 – Application Notes ... 70

9.1.1 General Operation .. 70

9.1.2 Initialization ... 70

9.1.3 Error Reporting .. 71

9.2 Keyword 2000 Commands .. 72

9.3 Keyword 2000 Messages .. 80

9.3.1 Transmitted Keyword 2000 Messages ... 80

9.3.2 Received Keyword 2000 Messages ... 81

9.3.3 Format Byte ... 81

9.3.4 Target Address Byte .. 82

9.3.5 Source Address Byte .. 82

9.3.6 Length Byte ... 82

9.3.7 Data Bytes .. 82

9.3.8 Checksum Byte .. 82

10 SPI (SAINT2 only) .. 83

10.1 Serial Peripheral Interface (SPI) Overview ... 83

10.2 SPI Hardware Connection Diagram ... 84

11 LIN ... 85

11.1 LIN – Application Notes ... 86

11.2 LIN Commands .. 88

11.3 LIN Messages .. 93

SAINT

Programming Reference 03/03/20 Page 5

11.3.1 Transmitted LIN Messages (Master Frames) .. 93

11.3.2 Received LIN Messages (frames) .. 94

11.3.3 PID Byte .. 94

11.3.4 Data Bytes .. 94

11.3.5 Checksum Byte .. 94

11.3.6 Completion Code (Frame Error) Byte ... 95

12 Block Transfer ... 96

12.1 Using Block Transfer with the SAINT Bus Engine ... 96

12.2 Using Block Transfer without the SAINT Bus Engine .. 96

13 SAINT Gateway Functions .. 98

13.1 CAN1/CAN2 Bidirectional Gateway ... 98

13.2 CAN1 to CAN2 One-way Gateway ... 98

13.3 RS232/CAN Gateway ... 99

13.4 X/Y Gateway ... 100

14 Connectors ... 101

14.1 USB Connector .. 101

14.2 RS-232 Connector ... 101

14.3 SAINT CABLE ... 102

14.3.1 Saint2 v1.0, v1.1 .. 102

14.3.2 Saint2 v1.2 ... 103

14.3.3 Saint3 Pro .. 104

14.3.4 Mirco Saint3 .. 105

15 LEDs ... 106

15.1 Reset Button - Manual Reset ... 106

SAINT

Programming Reference 03/03/20 Page 6

Revision Log

Version Revisions Date Released to

Web

1.1 1. Initial release of the document.

2. Document CAN interface

3. Document Class2 interface

 March 30, 2006

1.2 1. Corrected and Updated Embedded Periodic SAINT2

Configuration Functions (08 70h – 08 7F)

 April 4, 2006

1.3 1. Correct text for SAINT2 Config Command A3h in section

5.1.11

2. Changed CAN Baud Rate configuration values

 May 2, 2006

1.4 1. Minor corrections

2. Corrected and updated configuration commands

3. Updated LED definition

4. Updated RS232 and USB interface

5. Updated coversheet of this document

 June 27, 2006

1.5 1. Added document of configuration option on system reset

2. Changed documentation to reflect change of CAN High

Resolution Time Stamp and Error Indicator bit to be

optional.

 July 28, 2006

1.6 1. Added documentation for configuration command 08h

A4h

2. Changed documentation to reflect change of configuration

command 08h A8h and 08h A9h

 September 6, 2006

1.7 1. Changed configuration command assignment from 08h

A4h to 08h A5h

2. Document IIC interface

 September 21, 2006

1.8 1. Noted in the SAINT2 pin out that pins 18 – 21 should not

be connected to any wires in a cable.

2. Added warning for bus traffic that exceeds RS232

capability.

 October 23, 2006

1.9 1. Document Keyword 2000 interface

2. Modified Config Cmd table to correct omission from ver

1.7 change – assignment change from A4 to A5.

 October 24, 2006

2.0 1. Modified sec 9.1 to add notes regarding supported SD card

format (FAT-16) & extended init time w/ SD card

installed.

2. Modified notes in Sec 9 (Keyword 2000) to indicated

version 1.1 hardware required to use KW2K.

3. Added Class2 Error Commands

4. Added S2 CAN option command to disable continuous

acknowledgment error retries

 October 31, 2006

2.1 1. Document IIC Monitor Interface.

2. Inserted new sec 9.1: Keyword 2000 – Application Notes.

a. Added KW2000 initialization sequence details.

3. Modified sec 9.2 (formerly sec 9.1)

a. Add new configuration command to set the “Start

Comms” message header type (format).

b. Changed default for “Timing Error Reporting”

command from disabled to enabled.

 March 26, 2007

2.2 1. Added IIC Monitor reference for board modification

2. Necessary for external website posting

 April 23, 2007

SAINT

Programming Reference 03/03/20 Page 7

Version Revisions Date Released to

Web

2.3 1. Added reference to “Low Speed CAN” as well as Fault

Tolerant CAN

2. Added note that a user should wait 250ms before issuing

any command after sending a SAINT2 reset.

 June 19, 2007

2.4 1. Update Software Packages

2. Add SPI documentation

2.5 Added 82 80 error message information January 4, 2008

2.6 Extensive modifications to sec 9 (Keyword 2000)

a. Added documentation for new “Direct” mode and

related commands.

b. Expanded the “Application Notes”

documentation.

 January 28, 2008

2.7 Edited IIC and SPI documentation on recommended practices. February 29, 2008

2.8 1. Added remote frame information (supported in firmware

version 3.6.9+)

2. Added Gateway function descriptions (supported in firmware

3.6.10+)

3. Additional Keyword 2000 changes/enhancements for J2534

Support.

4. Added Trig in command additions

5. Added periodic control messages

6. Added LIN documentation (Initial Release)

 May 5, 2008

2.9 1. Updated LIN documentation – Slave Node emulation

capability added.

2. Clarify CAN byte descriptions

3. Clarify Trigger In function commands (08 A9)

4. CAN operation warning codes $50 and $58 have been

detailed

June 25, 2008

2.10 1. Clarify configuration commands in paragraph headings

2. Add and clarify CAN operational warning definitions

3. Add CAN Rx FIFO overflow error messages

4. Document Ack error retry function and limit changes

 Aug 25, 2008

2.11 1. Document CAN bus flooding function

2. Document ISO15765-2 Transport Layer on CAN

3. Clarified group file description in config function section

4. Added information on block transfer ($F8) header

5. Added Operation Warning Code ($08 $A1) error codes 3-6

 Feb 20, 2009

2.12 1. Updated/Clarified IIC Monitor Mode Documentation Mar 10, 2009

2.13 1. Added note for IIC informing user that device must have

pullups and provide acks

2. Added SAINT2 configuration commands for embedded

emulation function

 June 23, 2009

2.14 1. Corrected naming inconsistencies in the “Gateway”

instructions

2. Corrected the “SAINT2 Configuration Reports table” in

section 5.2 to reflect the proper values for “Retrieve serial

number” command that got overlooked in the v1.6 & 1.9

updates (change A4 to A5)

 Aug 27, 2009

2.15 1. Added Class2 example to block mode section

2. Corrections to Block Transfer size limits

 August 28, 2009

SAINT

Programming Reference 03/03/20 Page 8

Version Revisions Date Released to

Web

2.16 1. Added clarifications to the KW Initialization operations

sections.

 September 11, 2009

2.17 1. Added documentation for ISO15765-2 RX function

2. Add the 08 93 request for a timestamp

3. Add the 08 51 command

 February 12, 2010

2.18 1. Add configuration messages for HSCAN and FTCAN

transceiver mode control

 May 19, 2010

2.19 1. Add trigger in and trigger out schematics

2. Add CAN command to set a single CAN include filter

3. Add configurations for ISO15765-2 TP to filter out

individual CAN frames

 12/9/2010

2.20 1. Add TRIGOUT2 documentation (HW1.2 only)

2. Add SPI_INT – Trigger In (2) documentation

3. Add configuration command for number of ack retries

2.21 1. Fix minor error in bit fields for ISO-15765 FC options

2.22 Add info no how to set LIN 10.417 baud rate 03/05/2012

2.23 1. Added info on USB 3.0

2. Added info on 1 MB CAN

3. Added cable info for Hardware v1.2

 03/13/2012

2.24 1. Numerous typo and grammar fixes

2. Correct error in request SD card CRC

2.25 Changed IIC passive mode pin connections for display in PDF 06/21/2012

2.26 Added LIN one-shot table response, requires firmware 4.10.1+

2.27 Updated some ISO-15765 verbiage, re-paginate 02/26/2013

2.28 Clarify LIN checksum, correct J12602 typo to J2602 05/13/2013

2.29 Documented LIN auto-parity feature, requires firmware

4.12.1+

 05/28/2013

2.30 More clarification on ISO15765-2 07/09/2013

2.31 Corrections to I2C documentation 07/26/2013

2.32 Added Gateway X/Y documentation 09/30/2013

2.33 Added one-way Gateway documentation 11/06/2013

2.34 Reserve IDs $D0 - $DF for CAN FD 12/04/2103

2.35 Corrected command to disable automatic ack error retries 01/03/2014

2.36 Changed documentation for KW ECU and tester address

configuration messages. Documentation now matches

software, all modes work the same. Previously server mode

was documented as swapping the tester and ECU addresses.

Note: version 4.13.0 of the firmware swaps the tester and ECU

addresses when in server mode.

 04/25/2014

2.37 Remove all references to FF 00 in IIC section. Since the

monitor automatically sends the FF 00 including this just

confused the users.

 01/12/2015

2.38 Reserve IDs $A0-$AF for CAN3 and CAN4, $E0-$E8 for

CAN3 and CAN4 ISO15765-2

 05/27/2015

2.39 Correction to DB-25 for CAN_2 08/14/2015

2.40 Correction to 29-bit bytes fields 09/08/2015

2.41 Correct typo in 15765 setup for CAN2 10/14/2015

2.42 Update document to include support for USB 3.0 10/07/2016

2.43 Update echo on\off commands apply only to Saint1. Add note

that Data stream section only applies to users who bypass the

Bus Engine

 03/01/2017

SAINT

Programming Reference 03/03/20 Page 9

Version Revisions Date Released to

Web

2.44 Added information on Tx bit for LIN 04/25/2017

2.45 IIC updates, now support for 256 KHz requires 4.18.1 or later 08/18/2017

2.46 Update information on IIC connection between hardware

revisions

 08/24/2017

2.47 Added completion code bit when have over 50 bytes before

stop condition in IIC Monitor

 08/29/2017

2.48 Added comments that both modes of IIC do not echo back 04/26/2018

2.49 Correct configuration examples for ISO-15765 Rx and 29-bit

IDs

 05/14/2018

2.50 Added documentation on disabling ACKs in IIC 07/27/2018

2.51 Clarify\correct information on ISO-15765 configuration 02/20/2019

2.52 Added information on Saint3. Removed all Saint1 information.

Document additional embedded periodics. Dropped out of date

software packages section

 06/12/2019

2.53 New LIN functionality for Conformance testing 01/17/2020

2.54 CAN-FD configuration corrections 02/26/2020

2.55 CAN-FD updates. 03/03/2020

SAINT

Programming Reference 03/03/20 Page 10

1 Introduction

1.1 Scope

This document describes the use and operation of the SAINT2, micro SAINT3 and SAINT3 Pro in normal

communication mode. This document cannot be copied in whole or in part without the express written consent of Aptiv.

1.2 Precedence

This document shall have precedence over any information in any other document. Between reference documents, the

document with the later revision date shall have precedence.

1.3 Definitions and Nomenclature

SAINT - common nickname for the (Systems Analysis INterface Tool). Throughout this document “SAINT” will be

used to refer to the SAINT2 and both variants of the SAINT3. The SAINT3 is available in a micro version and a Pro

version. The term SAINT3 will be used to refer to both the micro SAINT3 and the SAINT3 Pro.

Host - The computer which communicates to the SAINT via RS-232 or USB.

USB - Universal Serial Bus

CAN - Controller Area Network data bus

CANFD - Controller Area Network Flexible data bus

C2 - Class 2

S2 - Saint2

uS3 - Micro Saint3

S3 Pro - Saint3 Pro

S3 - Micro Saint3 and Saint3 Pro

SAINT

Programming Reference 03/03/20 Page 11

2 Overview

This document describes the operation of the SAINT.

The following is synopsis of the SAINT features:

• Allows host system to communicate on supported serial busses. Performs timing, access, arbitration,

serialization, and error control for all protocols.

• Allows host system to configure the tool with SAINT Configuration Commands.

• Provides SAINT status with LEDs

• Software is easily updated over USB.

The following is a synopsis of requirements for use of the SAINT:

• Connection to power, ground, and busses to be monitored

• RS-232 or USB connection to host. USB is preferred.

SAINT

Programming Reference 03/03/20 Page 12

3 Host to SAINT Connection

3.1 RS-232

3.1.1 RS-232 Set Up

The SAINT uses the following RS-232 parameters:

• 8 Data Bits

• 1 Stop Bit

• No Parity

The SAINT supported baud rate is 57600. If the serial bus traffic is greater than can be handled by the 57600 RS232

baud rate, the message may be lost or corrupted.

The supported baud rate is sufficient for communicating with the Class2, Keyword, and slower CAN buses. However

USB connection is recommended for high speed CAN\CANFD (over 250 KHz) communications.

3.2 USB

The SAINT supports USB 1.1, USB 2.0 and USB 3.0.

SAINT

Programming Reference 03/03/20 Page 13

4 Message Format

4.1 Data Stream

The host data stream is broken into messages. A message consists of a Message ID and one or more data bytes.

The character FFh is used as an ESCAPE character to indicate the end of messages. There are three cases when an

ESCAPE character is received.

The Saint Bus Engine (SBE) handles all ESCAPE character processing for you. If you are using the SBE you do not have

to take into account ESCAPE character processing. This section only applies to advanced users who choose to bypass the

SBE.

 If the ESCAPE character is followed immediately by a second ESCAPE character, the following are true:

• The message is not yet complete.

• The pair of ESCAPE characters represents a single byte of message data of value FFh.

 If the ESCAPE character is followed immediately by a byte of value 00h, the following are true.

• The message is complete.

• Neither the FFh nor the 00h are part of the message.

• No more messages are ready to be sent.

If the ESCAPE character is followed immediately by of any value other than FFh or 00h, the following are true:

• The message is complete.

• Neither the ESCAPE character nor the character following the ESCAPE character are part of the message.

• The value following the ESCAPE character is the message ID (header byte) for a new message.

This data stream format was chosen to allow arbitrary long messages (i.e. 4K ISO 15765 CAN data blocks), to minimize

the overhead to two bytes per message during peak traffic, and to immediately recognize the end of a message without

having to waiting for the next message to start.

SAINT

Programming Reference 03/03/20 Page 14

4.2 SAINT Header Bytes

The SAINT and the host use the SAINT Header byte to identify the type of message that is being sent or received. The

header byte is 1 byte long and has the following general format:

SAINT Header Byte Format

bits 7 – 3 bit 2 bit 1 bit 0

Protocol ID Command Tx / Rx** Time Stamp Included

See SAINT

Protocol Ids table

below

= 1: message includes a protocol related SAINT

Command

= 0: message is to be sent to the serial bus

= 1: transmit

message

= 0: receive

message

= 1: 2 byte ms time stamp is

included

= 0: 2 byte ms time stamp is

not included

The Protocol ID, Bits 7 – 3 of the SAINT Header byte, identifies the serial bus protocol for the message being sent or

received. The Protocol IDs are defined below:

SAINT Protocol IDs

Not Used (00h) *Not Used (80h)

SAINT Configuration Command (08h) *Not Used (88h)

*Not Used (10h) *Not Used (90h)

*Not Used (18h) *Not Used (98h)

IIC (20h) CAN3 Non Saint (A0h)

Keyword 2000 (28h) CAN4 Non-Saint (A8h)

ISO15765-2_CANFD1 S3 only (30h) *Not Used (B0h)

ISO15765-2_CANFD2 S3 only (38h) LIN (B8h)

*Not Used (40h) ISO15765-2_CAN1 (C0h)

*Not Used (48h) ISO15765-2_CAN2 (C8h)

CAN1 (50h) CAN FD1 S3 only (D0h) deprecated

CAN2 (58h) CAN FD2 S3 only (D8h) deprecated

Class2 (60h) Saint2 only ISO15765-2_CAN3 non-Saint(E0h)

*Not Used (68h) ISO15765-2_CAN4 non-Saint(E8h)

*SPI (70h) Not Used (F0h)

*Reserved (78h) Block Transfer (F8h)

*These Ids are reserved for future use.

** For LIN the Tx bit is set when the Saint acts as the master.

SAINT

Programming Reference 03/03/20 Page 15

5 SAINT Configuration

5.1 SAINT Configuration Commands

The SAINT Configuration Commands are used to configure the general functions of the SAINT.

SAINT Configuration Commands

Header ID Data Description Compatibility

08h 10h 1 Byte Firmware Flash Programming

08h 20h None Device Enumeration

08 50h 1-TBD Bytes Embedded Emulation

08h 51h 1 – 12 Bytes Request an SD card file’s CRC

08h 70h – 7Fh 1-21 Bytes Set Up Periodic Message

08h 80h None SAINT Reset

08h 86h None Turn Time Stamp Information OFF

08h 87h None Turn Time Stamp Information ON

08h 90h 1-20 Bytes Send Periodic Message

08h 91h None End Periodic Message

08h 92h 0-1 Byte Request Software Version

08h 93h 3 Bytes Request A Time Stamp

08h A0h None Clear Operation Warning Code

08h A1h None Retrieve/Report Operation Warning Code

08h A2h 1 Byte Select Host Communication Channel

08h A3h 1-30 Bytes Select Serial Bus Protocols

08h A5h None Retrieve Serial Number

08h A8h 1 Bytes Trig Out function

08h A9h 3 Bytes Trig In function – (1)

08h ABh 3 Bytes Trig In function – (2)

08h BEh 1 Byte Manufacturing Test Command Saint2 only

08h BFh 1 Byte Not A User Command Saint2 only

08 C0h-CFh 1-21 Bytes Set Up Periodic Message

SAINT

Programming Reference 03/03/20 Page 16

5.1.1 Firmware Flash Programming (08 10h)

This command places the SAINT into a mode in which the SAINT firmware can be reflashed. A reset command

terminates this mode. For the SAINT3 send command 08 10 01.

5.1.2 Device Enumeration (08 20h)

This command retrieves a unique 2 byte code for each type of supported device hardware. This value can be used by your

software application to detect the type of Saint hardware in use. This value may be helpful to determine application

restrictions based on the type of device in use.

Major Minor Device Type

2 0 Saint2

3 0 Micro Saint3

3 1 Saint3 Pro

5.1.3 Embedded Emulation (08 50h)

Feature not available in the uS3. Not yet implemented in the S3 Pro.

These commands are used to interface with the SAINT2’s embedded emulation function. See the SAINT Emulation User

Guide for more information.

Host / Emulation Interface Messages

SAINT

header

ID Data Description

08 50 00 ASCII file name Start execution of emulation file

08 50 02 message data Message sent from emulation to host

08 50 03 Message data Message sent from host to emulation

08 50 04 emulation error information Message indicating an error in emulation execution

08 50 05 Emulation status information Message indicating the status of the emulation

execution

08 50 06 Emulation variable value Message indicating the value of a requested emulation

variable

SAINT

Programming Reference 03/03/20 Page 17

5.1.4 Request an SD card file’s CRC (08 51h)

Not applicable to the uS3.

This command returns the 32bit CRC of a file residing on the SD card. May cause loop overruns while CRC is being

computed. Not yet implemented in the S3 Pro.

Host to SAINT request: 08 51 XX XX … XX

Data Byte Description

XX XX Emulation filename in ASCII (capital letters, 8.3 format)

SAINT response: 08 51 00 YY YY YY YY or 08 51 EE ZZ

Data Byte Description

YY YY YY YY 32 Bit CRC of file

ZZ Error Value Description

0x00 Emulation is executing or CRC calculation is executing

0x01 Undefined SD card error

0x02 No such file or directory – SD card

0x05 I/O Error – SD card

0x09 Bad file number – SD card

0x0D Permission denied – SD card

0x11 File Exists – SD card

0x13 No such device – SD card

0x16 Invalid Argument – SD card

0x18 Too many files open – SD card

0x1C No space left on device – SD card

0x1E Read only file system (Sharing error) – SD card

0x20 Buffer is busy

SAINT

Programming Reference 03/03/20 Page 18

5.1.5 Set Up Periodic Message (08 70h –08 7Fh) (08 C0h-08 CFh)

These commands allow the user to set up and transmit up to 32 periodic messages from the SAINT hardware. The

following table describes the command formats.

Configuration Command Description

$08 7X 00 T1 T2 HH YY YY YY …

Turn periodic message 7X ON
T1 = MSB of 1ms/bit periodic time
T2 = LSB of 1 ms/bit periodic time
HH = SAINT Header (i.e. $60 for Class2, $50 for CAN)
YY = Serial Message (1 to 15 bytes)

$08 7X 00 Turn message 7X ON after it has already been configured

$08 7X 01 Turn periodic message 7X OFF

$08 7X 10 Delete periodic message 7X

$08 7X 20 Delete all periodic messages that have been turned OFF

$08 7X 30 Delete all periodic messages

$08 7X 40 Request the configuration of periodic message 7X

$08 7X 50 Request the configuration of all periodic message that are OFF

$08 7X 60 Request the configuration of all periodic messages that are ON

$08 7X 70 Request both ON and OFF periodic message setting

$08 7X 80 Turn ON all periodic message that are OFF

$08 7X 90 Turn OFF all periodic messages that are ON

An additional 16 periodics are available using CX in place of 7X.

➢ The range of X in 08 7X is 0 to F. The range of X in 08 CX is 0 to F. CX not yet implanted in the S3.

➢ A Time Stamp of 0000h will cause the message to be sent one time and then turned OFF.

➢ If two messages align to be transmitted at the same time, the message with the lower ID will have priority.

5.1.6 SAINT Reset (08 80h)

This command will cause the Saint 2 to do a software reset. A user should wait approximately 250ms after issuing a

SAINT Reset to send any other commands to the SAINT.

5.1.7 Turn Time Stamp On and Off (08 86h and 08 87h)

These commands control whether or not a 16-bit time stamp is appended to the end of the bus message reports.

5.1.8 Send Periodic Message (08 90h and 08 91h)

These commands allow the user to set up and transmit a single periodic messages. Use the following format:

08 90 T1 T2 HH XX XX XX XX XX XX XX XX XX XX XX

 where

T1 = MSB of 1ms periodic time

T2 = LSB of 1ms periodic time

SAINT

Programming Reference 03/03/20 Page 19

HH = SAINT Header

XX… = Serial Message

The 08 91 messages cancels the periodic message.

5.1.9 Software Version Request (08 92h)

Command 08h 92h requests the SAINT firmware functional block version (ASCII). If the RS232 host communication

protocol is disabled, the command 08h 92h 01h requests the version of all blocks of the SAINT firmware (boot, re-flash,

functional, and user block) (ASCII).

5.1.10 SAINT Time Stamp Request (08 93)

Command 08 93 requests the SAINT’s current 2 byte Time Stamp Value.

Request:

Header ID 1 byte “marker” Description

08 93 XX Request 2 byte Time Stamp

Response:

Header ID 1 byte “marker” Data

08 93 XX 2 byte Time Stamp

5.1.11 Clear Operation Warning Code (08 A0h)

This command will clear the operation warning codes stored in the SAINT.

5.1.12 Retrieve and Report Operation Warning Code (08 A1h)

ID A1h has two functions. As a command 08h A1h retrieves the operation warning codes stored in the SAINT. The

return message has 0 - 32 bytes of data representing the operation warning codes. The warning code is defined in the

following table. As an unsolicited report message, it reports the operation warning code in the format of 08h A1h XXh.

XXh is a one byte warning code defined also in the following table.

Header ID Data Description

08h A1h 01h Loop overrun detected

08h A1h 02h USB buffer full detected

08h A1h 03h Escape sequence error

08h A1h 04h Message Too Long

08h A1h 05h Message Buffer Full

SAINT

Programming Reference 03/03/20 Page 20

08h A1h 06h Message Truncated

08h A1h 08h-0Fh Configuration setting warning

08h A1h 20h-27h IIC operation warning

08h A1h 28h-2Fh Keyword 2000 operation warning

08h A1h 50h The CAN1 TX buffer has overrun and

CAN frames have been discarded

08 A1h 30h-37h Reserved for ISO 15765 CANFD1

08 A1h 38h-3Fh Reserved for ISO 15765 CANFD2

08h A1h 51h The CAN1 RX buffer has overrun and

CAN frames have been discarded

08h A1h 52h-57h reserved for CAN 1

08h A1h 58h The CAN2 TX buffer has overrun and

CAN frames have been discarded

08h A1h 59h The CAN2 RX buffer has overrun and

CAN frames have been discarded

08h A1h 5Ah-5Fh reserved for CAN 2

08h A1h 60h-67h Class 2 operation warning (Saint2 only)

08h A1h 68h-6Fh Not Used

08h A1h 70h-77h SPI operation warning

08h A1h 78h-7Fh Not Used

08h A1h 80h-87h Not Used

08h A1h 88h-8Fh Not Used

08h A1h 90h-97h Not Used

08h A1h 98h-9Fh Not Used

08h A1h A0h-A7h Not Used

08h A1h A8h-AFh Not Used

08h A1h B0h-B7h Not Used

08h A1h B8h-BFh LIN operation warning

08h A1h C0h CAN packet buffer busy – rx message

dropped (ISO15765-2)

08h A1h C1h TX FIFO full – CAN packet message

dropped (can’t send FC – ISO15765-2)

08h A1h C2h-C7h Reserved

08h A1h C8h-CFh Reserved

08h A1h D0h-D7h Reserved for CANFD1

08h A1h D8h-DFh Reserved for CANFD2

08h A1h E0h-E7h Not Used

08h A1h E8h-EFh Not Used

08h A1h F0h-F7h Not Used

08h A1h F8h-FFh reserved

SAINT

Programming Reference 03/03/20 Page 21

5.1.13 Select Host Communication Channel (08 A2h)

Not applicable to uS3.

This command selects the Saint 2 to host communication protocol to be used.

Select Host Communication Protocol Command

Header ID Data Description

08h A2h 03h Select RS232 Only

08h A2h 0Ch Select USB Only

08h A2h 0Fh Select Both RS232 and USB

5.1.14 Select Serial Bus Protocols (08 A3h)

This command selects the serial bus protocols that will be enabled. Each byte in data field represents a protocol that is

being enabled. Any protocol that is not in the list will be disabled.

Example: 08 A3 50 60 58 enables CAN1, Class 2, and CAN2 vehicle buses.

Note: The configuration command message is always enabled and not affected by this command.

5.1.15 Retrieve Serial Number (08 A5h)

This command retrieves serial number of Saint unit. Return message with 6 data bytes – 6 character serial number in

hexadecimal ASCII form.

5.1.16 Trig Out (08 A8h)

Not applicable to uS3.

This command controls the TRIGOUT Pin (DB-25 connector pin number 24) operation. The command has a format of

08h A8h option_byte. Option byte has a bit by bit definition

SAINT

Programming Reference 03/03/20 Page 22

Option Byte Bit Definition

Option byte Value Description

Bit 0 – Bit 1

00

01

10

11

No action

Set TRIGOUT line low (0 volt)

Set TRIGOUT line high (5 volt)

Toggle TRIGOUT line

Bit 2 TBD TBD

Bit 3 TBD TBD

Bit 4 – Bit 5

00

01

10

11

No action

Set TRIGOUT2 line low (0 volt)

Set TRIGOUT2 line high (5 volt)

Toggle TRIGOUT2 line

(only in HW 1.2)

Bit 6 TBD TBD

Bit 7 TBD TBD

5.1.17 Trig In - 1 (08 A9h)

Not applicable to uS3.

This command controls and reports TRIGIN Pin (DB-25 connector pin number 4) operation. A Trig In command must

be sent to configure the SAINT to detect and report a change on the TrigIn pin.

5.1.17.1 Trigger In -- State Change

This command configures the Saint 2 firmware to send a trigger-in-marker message to the host when the state of the

Trigger In pin changes:

Header ID Option byte 2 byte “marker” Description

08 A9 01 XX XX
Configure SAINT to indicate trigger in pin state

change

With this configuration, the SAINT firmware will send the following message to the host when it detects a state change

on its trigger in pin:

Header ID Option byte 2 byte “marker” Description

08 A9 01 XX XX State change on trigger in pin

5.1.17.2 Trigger in -- edge detection marker

This command causes the Saint 2 firmware to send a trigger-in-marker message with edge detection information to the

host when a trigger in signal transition is detected.

SAINT

Programming Reference 03/03/20 Page 23

Header ID Option byte 2 byte “marker” Description

08 A9 02 XX XX
Configure SAINT to indicate trigger in pin

edge detected

With this configuration, the SAINT firmware will send one of the following messages to the host when it detects a state

change on its trigger in pin

Header ID Option byte Edge 2 byte “marker” Description

08 A9 02 AA XX XX Rising edge detected on trigger in pin

08 A9 02 FF XX XX Falling edge detected on trigger in pin

5.1.18 Trig In – 2 (08 ABh)

Not applicable to uS3.

This command controls and reports the state of the SPI_INT Pin (DB-25 connector pin number 22) operation. A Trig In

command must be sent to configure the SAINT to detect and report a change on the SPI_INT pin.

5.1.18.1 Trigger In -- State Change

This command configures the Saint 2 firmware to send a trigger-in-marker message to the host when the state of the

SPI_INT pin changes:

Header ID Option byte 2 byte “marker” Description

08 AB 01 XX XX
Configure SAINT to indicate SPI_INT pin state

change

With this configuration, the SAINT firmware will send the following message to the host when it detects a state change

on its SPI_INT pin:

Header ID Option byte 2 byte “marker” Description

08 AB 01 XX XX State change on SPI_INT pin

5.1.18.2 Trigger in -- edge detection marker

This command causes the Saint 2 firmware to send a trigger-in-marker message with edge detection information to the

host when a SPI_INT signal transition is detected.

Header ID Option byte 2 byte “marker” Description

08 AB 02 XX XX
Configure SAINT to indicate SPI_INT pin

edge detected

With this configuration, the SAINT firmware will send one of the following messages to the host when it detects a state

change on its trigger in pin

SAINT

Programming Reference 03/03/20 Page 24

Header ID Option byte Edge 2 byte “marker” Description

08 AB 02 AA XX XX Rising edge detected on SPI_INT pin

08 AB 02 FF XX XX Falling edge detected on SPI_INT pin

5.1.18.3 Trigger in – disable detection

This command causes the Saint 2 firmware to disable its trigger in pin detection:

Header ID Option byte 2 byte “marker” Description

08 AB 00 00 00 Disable SPI_INT pin detection

SAINT

Programming Reference 03/03/20 Page 25

5.1.19 Manufacturing Test Command(08 BEh)

This command controls the manufacturing test. The data byte value should match the pin number on the Saint 2 DB25

connector. Manufacturing test is only performed and valid when a special manufacturing test cable attached to the Saint2.

Not applicable to the Saint3.

Manufacturing Test Command

Header ID Data

08h BEh SAINT2 pin #

Manufacturing Test Command Response

Header ID Data Description

08h BEh FFh Test Failed

08h BEh FEh Test not defined

08h BEh FDh Test in progress

08h BEh FCh Illegal command

08h BEh Other # Test passed on the # of the pin

5.1.20 Saint USB Test Command(08 BFh)

This is not a user command.

5.2 SAINT Configuration Reports

The SAINT will report a Reset whenever one occurs. Most likely causes of reset are power on reset, host commanded

reset, or SAINT micro watchdog error. The SAINT does a cold start on all resets (all information is lost). The SAINT

will also report error conditions with the Report Error message below. See table T5-1 for error code definitions.

The SAINT will also echo back all system commands.

Header ID Description Data Bytes

08h 70h – 7Fh Report Set Up Periodic Message 1-21 bytes echoed

08h 80h Reset Occurred None

08h 82h Report Error 1 byte Error Code (See T5-1)

08h 86h Report Time Stamp Information OFF None

08h 87h Report Time Stamp Information ON None

SAINT

Programming Reference 03/03/20 Page 26

08h 88h Report Transmit Echo ON None

08h 89h Report Transmit Echo OFF None

08h 90h Report Send Periodic Message ON 1-20 bytes echoed

08h 91h Report Send Periodic Message OFF None

08h 92h Report SWID 1-N bytes of ASCII Data

08h A0h Report operation warning code cleared None

08h A1h Report operation warning code 0-32 bytes warning code

08h A2h Report host communication channel 1 byte echoed

08h A3h Report Bus Protocol Selected 1-30 bytes protocol ID(See

Section 4-2)

08h A5h Retrieve serial number 6 byte serial number ASCII code

08h A8h Report TriggerOut None

08h A9h Report TriggerIn 2 byte marker

08h BEh Report Manufacturing Test Status 1 byte(See Section 5.1.15)

08h BFh N/A None

T5-1 SAINT Configuration Command Error Codes

Code Description

80h System – Invalid message ID

81h System – RS-232 Transmit Buffer Full

82h System – UART Error (Overrun, etc)

83h System – Received message length error

84h System – Have not read previous message

SAINT

Programming Reference 03/03/20 Page 27

5.3 SAINT Configuration through SD Card

Not applicable to uS3.

The SAINT can be configured at reset by using an SD card. Following reset, the SAINT searches the SD card root

directory for the file config.txt. If config.txt is found, the SAINT executes the configuration instructions in config.txt.

NOTES: 1) Currently, ONLY the FAT-16 format is supported (SD cards formatted as FAT-32 will not work.)

2) Initialization (reset/boot) time with an SD card inserted can take up to 30sec (nominally 15sec) due to

additional integrity checks that are performed on the SD card media.

5.3.1 Configuration File Requirements

• Text format file

• Must be saved in root directory of SD card

• The first line of config.txt must be ‘begin’ and last line must be ‘end’

• Configuration instructions are between ‘begin’ and ‘end’ with one instruction per line

• Comments are allowed at end of instruction and begin with a semicolon.

• The maximum length of each line is 56 characters.

5.3.2 Configuration Instructions

5.3.2.1 ‘can channel swap’ Instruction

This instruction swaps the CAN hardware channel mapping between CAN 1 and CAN 2. Before swapping CAN_1 ID

0x50 is assigned to hardware channel 1 and CAN_2 ID 0x58 is assigned to hardware channel 2. After swapping, 0x50 is

assigned to channel 2 and 0x58 assigned to channel 1.

5.3.2.2 ‘group file’ Instruction

Group file instruction are followed by a colon and a group file name. After the SAINT reads the command, it executes

the group file immediately if the group file exists in SD card root directory. Group file format is described in the Saint

Document and has the following restrictions:

• The group file name cannot be longer than 8+3 characters.

• The maximum length of the group file is 16 lines with a maximum of 31 data bytes in each line.

• The time field in group file is ignored. Firmware executes group file messages sequentially and immediately.

• Comments are not allowed.

• System reset command 08 80 is not allowed.

SAINT

Programming Reference 03/03/20 Page 28

5.3.3 Config.txt Example

begin

can channel swap

group file: playback.grp ; execute group file at system rest

end

5.3.4 Group File Example

A SAINT group file contains a list of messages and an associated transmit delay from the previous message. The delay must

be a 4-digit decimal value in milliseconds from the previous message. The message must follow the SAINT Programmer’s

Reference format (i.e., the message must include the SAINT header byte). Group files may be used to send any message

(within the allowable length) that may be sent from the host PC to the SAINT. IMPORTANT: Note that group files called

from a config.txt file will be executed without timing control or guarantee of synchronous execution. These group files

should only be used to configure the SAINT hardware. They should not be used to send messages onto a serial bus,

send a SWCAN high voltage wakeup, or send any other function that requires synchronous execution or timing

control.

The number of lines in a group file called from the config file is limited to 16 lines.

Group File Example:

0000 54 01 C9 39

0010 54 04 00

SAINT

Programming Reference 03/03/20 Page 29

6 CAN/CANFD Messages

The SAINT supports 2 independent CAN/CANFD nodes. CAN_1 (SAINT header 50h) and CAN_2 (SAINT header 58h)

may each be independently configured to support dual wire CAN/CANFD, single wire CAN, and fault tolerant CAN at a

user specified baud rate. The two dual wire CAN channels share the same pins with CANFD if using the SAINT3.

SAINT CAN Node Information

CAN Function Connector Label S2/S3 Pro

CABLE Pin #

uS3 CABLE

Pin

Message

Header

Command

Header

Single Wire CAN 1 SWCAN1 1 N/A 50h 54h

Single Wire CAN 2 SWCAN2 5 N/A 58h 5Ch

Dual Wire, High Speed CAN 1 CAN/CANFD_1_H

CAN/CANFD_1_L

8

9

7

2

50h 54h

Dual Wire, High Speed CAN 2 CAN/CANFD2_H

CAN/CANFD2_L

10

11

8

4

58h 5Ch

Fault Tolerant CAN 1

(Low Speed CAN)

FT_1_H

FT_1_L

Only on daughter

board, HW 1.1

and earlier

N/A 50h 54h

Fault Tolerant CAN 2

(Low Speed CAN)

FT_2H

FT_2L

2

13

N/A 58h 5Ch

SAINT

Programming Reference 03/03/20 Page 30

6.1 CAN/CANFD Commands

The CAN commands are used to configure the operation of the SAINT’s CAN nodes.

CAN/CANFD Command Format

Header ID Description Data Bytes

54h or 5Ch 01h Set CAN (CANFD arbitration) Frequency BTR0 BTR1

54h or 5Ch 02h Set Single Wire CAN Mode Control MODE

54h or 5Ch 03h Set CAN Controller to listen only mode RXONLY

54h or 5Ch 04h Set CAN Transceiver TXVR MODE

54h or 5Ch 05h Set SAINT options OPTION

54h or 5Ch 06h Set CANFD data frequency (S3 only) DATA BYTES

54h or 5Ch 09h Set CAN ID include filter CAN ID MASK

54h or 5Ch 0Ah Set CAN FD ISO Mode (S3 only) 0 = ISO*, 1 – Non ISO

54h or 5Ch 0Bh CANFD Transmitter Delay Compensation (TDC)

(S3 only)

TDC value 0 to 7Fh (127)

54h or 5Ch 0Ch Set CAN/CANFD termination (S3 only) 0 = Off, 1 = On*

54 FFh Bus Flooding MODE CAN MSG

* = default

6.1.1 Configuring CAN Frequency

Calculations not valid for CANFD. Only valid for SAINT2.

By modifying BTR0 and BTR1, you can change the frequency, Synchronization Jump Width, and Sampling point, of the

TC1130 MultiCAN controller.

Synchronization Jump Width = sjw = 1 + SJW, SJW = bit 7 – bit 6 of BTR0

Baud Rate Prescaler = brp = 1 + BRP, BRP = bit5 – bit0 of BTR0

tseg2 = 1 + TSEG2, TSEG2 = bit6 – bit4 of BTR1

tseg1 = 1 + TSEG1, TSEG1 = bit3 – bit0 of BTR1

DIV8 = bit7 of BTR1 (0: tq = BPR+1 clock cycles; 1: tq = 8*(BPR+1) clock cycles)

Baud Rate = 75.0+E6

 (DIV8*7 + 1) * (BRP + 1) * (3 + TSEG1 + TSEG2)

Bit Time = 1

 Baud Rate

Sample Point = 2 + TSEG1

 3 + TSEG1 + TSEG2

SAINT

Programming Reference 03/03/20 Page 31

Example Set CAN/CANFD Frequency Configuration Messages

Header ID Data Bytes CAN Parameter Value Baud Rate Sample

Point

54h or 5Ch 01h 8D AF SJW=2, BRP=13, TSEG1 = 15, TSEG2=2, DIV8=1 33,482(33,333) 85%

54h or 5Ch 01h B1 2D SJW=2, BRP=49, TSEG1 = 13, TSEG2=2, DIV8=0 83,333 83.3%

54h or 5Ch 01h F0 3A SJW=3, BRP=48, TSEG1 = 10, TSEG2=3, DIV8=0 95,200 75%

54h or 5Ch 01h F1 39 SJW=3, BRP=49, TSEG1 = 9, TSEG2=3, DIV8=0 100,000 73.3%

54h or 5Ch 01h DD 3E SJW=3, BRP=29, TSEG1 = 14, TSEG2=3, DIV8=0 125,000 80%

54h or 5Ch 01h D8 39 SJW=3, BRP=24, TSEG1 = 9, TSEG2=3, DIV8=0 200,000 73.3%

54h or 5Ch 01h CE 3E SJW=3, BRP=14, TSEG1 = 14, TSEG2=3, DIV8=0 250,000 80%

54h or 5Ch 01h C9 39 SJW=3, BRP=9, TSEG1 = 9, TSEG2=3, DIV8=0 500,000 73.3%

54h or 5Ch 01h 84 2A SJW=3, BRP=4, TSEG1 = 10, TSEG2=2, DIV8=0 1,000,000 80%

For CANFD the 54h 01h or 5Ch 01h configuration message sets the baud rate for the arbitration portion of the message.

Separate configuration commands are used for CANFD data baud rate shown below.

6.1.2 Configuring CANFD Data Baud Rate

Example Set CANFD Data Baud Rate Configuration Messages

Header ID Data Bytes Baud Rate Sample Point

54h or 5Ch 06h 00 09 0D 23 1,000,000 ?

54h or 5Ch 06h 00 04 0D 23 2,000,000* ?

54h or 5Ch 06h 00 03 0D 23 2,500,000 ?

54h or 5Ch 06h 00 03 0A 23 3,000,000 ?

54h or 5Ch 06h 00 02 0D 23 4,000,000 ?

54h or 5Ch 06h 00 01 0D 23 5,000,000 ?

CANFD Data baud rates are also covered in section 6.1.7.

SAINT

Programming Reference 03/03/20 Page 32

6.1.3 Single Wire Mode Control

Not applicable to uS3.

The following commands allow the user to control the MODE0 and MODE1 pins of the Single Wire CAN transceiver

(MC33897).

Set Single Wire Mode Command

Header ID Data Byte Description

54h or 5Ch 02h 00 Sleep mode

54h or 5Ch 02h 01 High-speed transmission mode

54h or 5Ch 02h 02 Wake-up transmission mode

54h or 5Ch 02h 03 Normal transmission mode

6.1.4 Listen Only Mode Control

The following commands allow the user to control the Listen Only mode of the CAN controller. When the CAN Node is

in the listen only mode, it will not transmit any frame onto the CAN bus, including active error frames and frame

acknowledgments.

Set Listen Only Mode Command

Header ID Data Byte Description

54h or 5Ch 03h 00 CAN Node will TX and RX

54h or 5Ch 03h 01 CAN Node will only RX

SAINT

Programming Reference 03/03/20 Page 33

6.1.5 CAN Transceiver Control

The following commands allow the user to control either CAN Node 1 or CAN Node. The optional 2nd data byte also

allows the user to configure any associated operational modes with the selected CAN transceiver.

Set CAN Transceiver Command

Header ID TXVR MODE (optional) Description

54h or 5Ch 04h 00 00 Normal Mode

01 Standby Mode

High Speed/Dual Wire CAN (TJA1040)

54h or 5Ch 04h 01 01 Sleep Mode

03 Normal Mode

Fault Tolerant CAN (TJA1054A)

54h or 5Ch 04h 02 00 Sleep Mode

01 High Speed Mode

02 High Voltage Mode

03 Normal Mode

Single Wire CAN (MC33897)

54h or 5Ch 04h 03 No optional mode supported CAN transceiver on a daughter board

54h or 5Ch 04h 04 CAN-FD (coming soon)

6.1.6 CAN SAINT Options

The following command allows the user to enable or disable SAINT options. Whether an option is set using a 54h or 5Ch

header, the option will apply to both CAN1 and CAN2. There are currently two SAINT options available.

6.1.6.1 Error Indicator Option Bit

This bit will most likely be used to indicate CAN-FD in the Saint3. For the Saint2 this bit will remain as the error

indicator.

This feature is not available in the S3. The S3 uses this bit to indicate that the message is a CANFD message.

The SAINT can set a bit in the unused bits of the CAN message ID to indicate an error in a frame. The error information

is always contained in the status byte that precedes the time stamp, but the additional error indicator bit allows for easier

filtering of error frames. If this option is enabled, a frame that contains an error will have bit 6 set in the MSB of the

Message ID.

Example: 51 40 00 01 E6 78

 |

 Error indicator bit set in Message ID of receive error

SAINT

Programming Reference 03/03/20 Page 34

Example: 51 46 21 11 22 33 44 55 03 E6 78

 |

 Error indicator bit set in Message ID of transmit error

6.1.6.2 High Resolution Time Stamp Option Bit

The SAINT can provide a high resolution, relative time stamp. If this bit is set, the SAINT will insert a high resolution

time stamp bit after the frame data and before the status byte of the frame. The high resolution time stamp can be used in

conjunction with the 2 byte time stamp determine a high resolution time difference between two messages. The following

equations can be used to calculate the high resolution delta time:

• Delta time = (((High Res TS2 – High Res TS1) * 25) + (X * 212))

• Where X = number of times the High Resolution Time Stamp has rolled over

• Rollover time = 213 * bittime

• Resolution = 25 * bittime

• bittime = ((DIV8*7 + 1) * (BRP + 1) * (3 + TSEG1 + TSEG2)) / 75M - use actual values not general baud

rate

Example: 51 06 21 11 22 33 44 55 A4 10 E6 78

 51 06 21 11 22 33 44 55 F6 10 E6 78

 |

 High Resolution Time Stamp

6.1.6.3 Disable Continuous Ack Error Message Retries

In the normal operation of the CAN physical layer, a transmitted frame is not completed without error until a receiver has

acknowledged the frame by setting the acknowledgment bit in the transmitted frame. By default, when an

acknowledgment has not been received, the SAINT will attempt to resend the frame up to 4 times. There may be

circumstances during product testing when this is not desirable. The SAINT can be configured in 3 different ways with

regards to unacknowledged, transmitted CAN frames:

1) Default – The SAINT will attempt a CAN frame 5 times (first plus 4 retries). (54 05 00)

2) The SAINT will only try a CAN frame one time. (54 05 04)

3) The user can configure the SAINT to try a specified number of times (total includes first try). (54 05 00 XX XX

XX XX)

If no ACK is received in the number of configured retries, the SAINT will flush and restart its transmit fifo. Note that

this means that any frames that have been sent to the SAINT to be transmitted that have already been placed in the fifo

will be lost.

SAINT

Programming Reference 03/03/20 Page 35

6.1.6.4 Setting CAN SAINT Options

Use the following message to set the CAN SAINT Options.

Set CAN SAINT Options

Header ID Option # of Ack Retries (optional) Description

54h or 5Ch 05h OPT XX XX XX XX (1 retry/bit) Set SAINT Options as described below

OPT bit definition

OPT Description

b7 – b3 Reserved

b2 = 0: continuous retries are enabled for ACK errors = 1: disable continuous retries for ACK

errors

b1 = 0: disable error indicator option bit = 1: enable error indicator option bit

b0 = 0: disable high resolution time stamp option bit = 1: enable high resolution time stamp bit

6.1.7 Set CANFD data baud rate

Example Set CANFD data baud rate

Header ID Data Bytes Baud Rate

54h or 5Ch 06h 00 09 0D 23 1,000,000

54h or 5Ch 06h 00 02 16 55 2,000,000*

54h or 5Ch 06h 00 05 0A 22 2,000,000

54h or 5Ch 06h 00 05 06 11 3,000,000

54h or 5Ch 06h 00 02 0A 22 4,000,000

54h or 5Ch 06h 00 04 05 11 4,000,000

54h or 5Ch 06h 00 01 0D 23 5,000,000

* = default

CANFD arbitration and data baud rates should be matched see Section 6.2 below.

6.1.8 Set CAN ID Include Filter

The following command allows the user/plug-in to set the SAINT’s CAN controller’s CAN ID acceptance filter. When

this filter is specified, the SAINT’s CAN controller will only receive messages that match the CAN ID anded with the

SAINT

Programming Reference 03/03/20 Page 36

mask. Only the received messages will be sent from the SAINT to the host PC. Using this command may be very helpful

for PC applications that are overburdened when trying to process all of the messages on a vehicle bus. This only filters

messages received from the CAN bus. All messages transmitted by the SAINT onto the bus will be sent to the host.

Set CAN ID Include Filter

Header ID CAN ID Mask Description

54h or 5Ch 09h XX XX MM MM Set an 11 bit CAN ID include filter

54h or 5Ch 09h XX XX XX XX MM MM MM MM Set a 29 bit CAN ID include filter

54h or 5Ch 09h 00 n/a Reset filter to include all CAN IDs

Examples:

1) To include only CAN ID 0x7E0 send a 54 09 07 E0 FF FF.

2) To include CAN IDs 0x7E0 to 0x7EF send a 54 09 07 E0 FF F0.

6.1.9 Configuring CANFD ISO Mode (S3 only)

Example Set CANFD ISO mode Configuration Messages

Header ID Data Bytes Mode

54h or 5Ch 0Ah 00 ISO Mode*

54h or 5Ch 0Ah 01 Non-ISO Mode

D4h or DCh 0Ah 00 ISO Mode*

D4h or DCh 0Ah 01 Non-ISO Mode

*= power on default

Note: D4 and DC headers will be deprecated

6.1.10 CAN FD Transmitter Delay Compensation (TDC) (S3 only)

Transmitter delay compensation is set automatically for CAN FD bit rates of 4Mbps and above. The default value is 13h.

Note: Where the bit rate pre-scaler value is greater than 2, the default TDC is set to 0.

It is possible to change the default TDC value. The value set will override the default value.

Header ID Data Bytes

54h or 5Ch 0Bh 00h* to 7Fh

* = default

SAINT

Programming Reference 03/03/20 Page 37

6.1.11 Enable\Disable CAN bus termination (S3 only)

CAN bus termination can be turned on and off via configuration messages for the S3 only. This feature does not work

with the Saint2. For the S2, termination is enabled by default. On the S2 jumpers must be removed to disable the

termination jumpers When termination is enable a 120 ohm resistor is connected between the CAN high and low lines.

Termination should be applied across the two extreme opposite ends of a vehicle bus. If only two CAN nodes are on the

bus such as a product being tested with the Saint, then both devices should have termination in place. When connecting

the Saint in a vehicle termination is not normally needed or desired.

Header ID Data Byte

54h or 5Ch 0Ch 00h = OFF, 01h = ON (default)

6.2 CANFD Special considerations

When setting the arbitration and data baud rates for CANFD it is important to match the time quanta value. The

following table provides “matched” data rates for the arbitration and data rates for CANFD.

Arbitration Baud Rate Message Data Baud Rate Message

125,000 54 01 5E 05 BE 2F 2,000,000 54 06 00 05 0A 22

250,000 54 01 2E 05 5E 17 2,000,000 54 06 00 05 0A 22

500,000 54 01 16 05 2E 0B 2,000,000 54 06 00 05 0A 22

125,000 54 01 5E 05 BE 2F 3,000,000 54 06 00 05 06 11

250,000 54 01 2E 05 5E 17 3,000,000 54 06 00 05 06 11

500,000 54 01 16 05 2E 0b 3,000,000 54 06 00 05 06 11

125,000 54 01 72 04 E4 39 4,000,000 54 06 00 04 05 11

250,000 54 01 5E 02 BE 2F 4,000,000 54 06 00 02 0A 22

500,000 54 01 2E 02 5E 17 4,000,000 54 06 00 02 0A 22

Notes: Configuration messages as shown are for CANFD1. For CANFD2 simply change the header byte from 54h to

5Ch.

SAINT

Programming Reference 03/03/20 Page 38

6.3 Constructing a CAN Transmit Frame

The following message formats are used to transmit a CAN frame onto the serial bus.

11 Bit Message ID CAN Data Frame Message Format

Byte 1 Byte 2: b7-b3 Byte 2: b2-b0 and Byte 3 Bytes 4-11

Header CAN frame definition bits 11 bit Identifier (000h – 7FFh) up to 8 Data Bytes

50h or 58h 00000b b10 – b0 D1 D2 D3 D4 D5 D6 D7 D8

11 Bit Message ID CANFD Data Frame Message Format

Byte 1 Byte 2: b7-b3 Byte 2: b2-b0 and Byte 3 Bytes 4-11

Header CAN frame definition bits 11 bit Identifier (000h – 7FFh) up to 64 bytes for CANFD

50h or 58h 01000b b10 – b0 D1 D2 D3, … D64

29 Bit Message ID CAN Data Frame Message Format

Byte 1 Byte 2: b7-b5 Byte 2: b4-b0 to Byte 5 Bytes 6-13

Header CAN frame definition bits 29 bit Identifier (00000000h – 1FFFFFFFh) up to 8 Data Bytes

50h or 58h 100b b28 – b0 D1 D2 D3 D4 D5 D6 D7 D8

29 Bit Message ID CANFD Data Frame Message Format

Byte 1 Byte 2: b7-b5 Byte 2: b4-b0 to Byte 5 Bytes 6-13

Header CAN frame definition bits 29 bit Identifier (00000000h – 1FFFFFFFh) up to 64 bytes for CANFD

50h or 58h 110b b28 – b0 D1, D2, D3, … D64

Note: For extended Identifiers, bit7 of byte2 must be set.

Note: For CANFD, bit 6 of byte 2 must be set.

6.4 Constructing a CANFD Transmit Frame (Deprecated)

Deprecated. Please configure your CAN channel for CANFD and transmit via 50h or 58h.

The following message formats are used to transmit a CAN frame onto the serial bus.

SAINT

Programming Reference 03/03/20 Page 39

11 Bit Message ID CANFD Data Frame Message Format

Byte 1 Byte 2: b7-b3 Byte 2: b2-b0 and Byte 3 Bytes 4-67

Header CANFD frame definition bits 11 bit Identifier (000h – 7FFh) up to 64 Data Bytes

D0h or D8h 00000b b10 – b0 D1 D2 D3… D64

29 Bit Message ID CANFD Data Frame Message Format

Byte 1 Byte 2: b7-b5 Byte 2: b4-b0 to Byte 5 Bytes 6-71

Header CANFD frame definition bits 29 bit Identifier (00000000h – 1FFFFFFFh) up to 64 Data Bytes

D0h or

D8h

100b b28 – b0 D1 D2 D3…D64

6.5 CAN Channel 1 Bus Flooding Function

The SAINT can be used to flood the CAN bus using CAN channel 1. The SAINT will send the specified frame onto the

CAN bus as quickly as it is able. The specified frame may have an incremented data byte allowing for 256 unique

messages to be transmitted as the bus is being flooded.

Set CAN 1 Bus Flooding

Header ID Data Byte 1 Data Bytes 2 – up to Data Byte 13

54h FFh MODE CAN message

MODE Byte Definition

MODE Description

00 Disable Bus Flooding

01 Enable Bus Flooding with CAN message in data bytes 2 – 13

02 Enable Bus Flooding with CAN message in data bytes 2 – 13 and increment the last data byte value

with each transmitted frame

Examples:

54 FF 01 01 22 11 22 33 44 00 will configure the SAINT to transmit the following:

$122 11 22 33 44 00

$122 11 22 33 44 00

$122 11 22 33 44 00

etc

SAINT

Programming Reference 03/03/20 Page 40

54 FF 02 01 22 11 22 33 44 00 will configure the SAINT to transmit the following:

$122 11 22 33 44 00

$122 11 22 33 44 01

$122 11 22 33 44 02

etc

54 FF 01 81 22 33 44 11 22 00 will configure the SAINT to transmit the following:

$01223344 11 22 00

$01223344 11 22 00

$01223344 11 22 00

etc

54 FF 02 81 22 33 44 11 22 00 will configure the SAINT to transmit the following:

$01223344 11 22 00

$01223344 11 22 01

$01223344 11 22 02

etc

Note: Set bit7 of the Message ID for 29-bit CAN/CANFD. Set bit6 to indicate CANFD.

SAINT

Programming Reference 03/03/20 Page 41

6.6 CANFD Channel 1 Bus Flooding Function

Depreacated. Please use 54h for CANFD bus flooding

CANFD bus flooding is very similar to the CAN bus flooding described in section 6.5 above. For CANFD simply set bit

6 (add $40) to the CAN ID.

6.7 Received CAN/CANFD Frames

The SAINT reports back to the host the CAN/CANFD frames that it receives from the CAN or CANFD bus. These

reported frames include frames that the SAINT has transmitted onto the bus and frames that it has received from other

devices on the CAN/CANFD bus. The frames are reported back to the host in messages with the following formats.

11 Bit Message ID CAN Data Frame with 2 Byte Time Stamp

Byte 1 Byte 2:b7-b3 Byte 2:b2-b0,

Byte 3

Bytes 4—

(3+N)

Byte 4+N Byte (5+N) –

Byte (6+N)

Header

5X

00000b Message ID

Bytes

N Data Bytes Completion

Code

1ms resolution

Time Stamp

11 Bit Message ID CANFD Data Frame with 2 Byte Time Stamp

Byte 1 Byte 2:b7-b3 Byte 2:b2-b0,

Byte 3

Bytes 4—

(3+N)

Byte 4+N Byte (5+N) –

Byte (6+N)

Header

5X

01000b Message ID

Bytes

N Data Bytes Completion

Code

1ms resolution

Time Stamp

29 Bit Message ID CAN Data Frame with 2 Byte Time Stamp

Byte 1 Byte 2:b7-b5 Byte 2:b4-b0,

Byte 5

Bytes 6—

(5+N)

Byte 6+N Byte (7+N) –

Byte (8+N)

Header

5X

100b Message ID

Bytes

N Data Bytes Completion

Code

1ms resolution

Time Stamp

SAINT

Programming Reference 03/03/20 Page 42

29 Bit Message ID CANFD Data Frame with 2 Byte Time Stamp

Byte 1 Byte 2:b7-b5 Byte 2:b4-b0,

Byte 5

Bytes 6—

(5+N)

Byte 6+N Byte (7+N) –

Byte (8+N)

Header

5X

110b Message ID

Bytes

N Data Bytes Completion

Code

1ms resolution

Time Stamp

11 Bit Message ID CAN Data Frame without 2 Byte Time Stamp

Byte 1 Byte 2:b7-b3 Byte 2:b2-b0,

Byte 3

Bytes 4—

(3+N)

Byte 4+N

Header

5X

00000b Message ID

Bytes

N Data Bytes Completion

Code

11 Bit Message ID CANFD Data Frame without 2 Byte Time Stamp

Byte 1 Byte 2:b7-b3 Byte 2:b2-b0,

Byte 3

Bytes 4—

(3+N)

Byte 4+N

Header

5X

01000b Message ID

Bytes

N Data Bytes Completion

Code

SAINT

Programming Reference 03/03/20 Page 43

29 Bit Message ID CAN Data Frame without 2 Byte Time Stamp

Byte 1 Byte 2:b7-b5 Byte 2:b4-b0,

Byte 5

Bytes 6—

(5+N)

Byte 6+N

Header

5X

100b Message ID

Bytes

N Data Bytes Completion

Code

29 Bit Message ID CANFD Data Frame without 2 Byte Time Stamp

Byte 1 Byte 2:b7-b5 Byte 2:b4-b0,

Byte 5

Bytes 6—

(5+N)

Byte 6+N

Header

5X

110b Message ID

Bytes

N Data Bytes Completion

Code

6.7.1 Header Description

Header

Header Description: See definition of SAINT header bits in TBD

50h or 58h CAN/CANFD Frame Received from bus, no 2 byte time stamp

51h or 59h CAN/CANFD Frame Received from bus with 2 byte time stamp

52h or 5Ah CAN/CANFD Frame Transmitted onto bus, no 2 byte time stamp

53h or 5Bh CAN/CANFD Frame Transmitted onto bus with 2 byte time stamp

D0h or D8h CANFD Frame Received from bus, no 2 byte time stamp

D1h or D9h CANFD Frame Received from bus with 2 byte time stamp

D2h or DAh CANFD Frame Transmitted onto bus, no 2 byte time stamp

D3h or DBh CANFD Frame Transmitted onto bus with 2 byte time stamp

SAINT

Programming Reference 03/03/20 Page 44

6.7.2 CAN Frame Definition Bit Description

CAN Frame Definition Bits

CAN Frame Definition bits Description

b7
=0 for 11 bit ID frame

=1 for 29 bit ID frame

b6
=0 for Standard CAN

=1 for CANFD

b5
=0 for no error in frame (optional)

=1 for error in frame (optional)

6.7.3 Message ID Bytes Description

CAN/CANFD Message ID Bytes

ID Type Allowed Values

11 bit ID 000h – 7FFh

29 bit ID 00000000h – 1FFFFFFFh

6.7.4 Data Bytes Description

CAN allows 0 to 8 data bytes per frame. CANFD allows up to 64 data bytes per frame.

6.7.5 Completion Code

The completion code contains information from the CAN/CANFD controller of the Saint. It is used to communicate

whether or not the frame was successfully transmitted or received. It identifies the error if the communication was not

successful.

Completion Code Definition

Completion

Code Byte

Description

0x00 reserved

0x01 Stuff error – More than 5 equal bits in a sequence have occurred in a part of a received frame where this

is not allowed.

0x02 Form error – A ‘fixed format part’ of a received frame has the wrong format.

SAINT

Programming Reference 03/03/20 Page 45

0x03 Ack error – The transmitted frame was not acknowledged by another node.

0x04 Bit 1 error – During a frame transmission the CAN node tried to send a recessive level (1) outside the

arbitration field and the acknowledge slot, but the monitored bus value was dominant.

0x05 Bit 0 error – 1) During transmission of a frame (or ack bit, active error flag, overload flag) the CAN

node tried to send a dominant level (0), but the monitored bus value was recessive. 2) During bus-off

recovery this code is set each time a sequence of 11 recessive bits has been monitored. The CPU may

use this code as indication that the bus is not continuously disturbed.

0x06 CRC error – The CRC checksum of the received frame was incorrect.

0x07 reserved

0x08 frame transmitted onto CAN bus successfully

0x10 frame received from CAN bus successfully

0x11-0x1F reserved

0x20 CAN receive buffer has overrun – a CAN frame has been dropped

0x30 CAN receive FIFO has overrun multiple times, following frames may be out of order

6.7.6 1 ms Resolution 2 Byte Time Stamp

The 1ms resolution time stamp is the last two bytes of the message if this option is enabled by the SAINT configuration

command (08 87h). Each bit count is 1 ms.

1 ms Resolution Time Stamp Range

2 Byte Value Absolute Time in ms

0000h – FFFFh 0ms – 65535ms

SAINT

Programming Reference 03/03/20 Page 46

ISO15765-2 Transport Protocol on CAN/CANFD

The SAINT can be configured to transmit and receive messages using the ISO15765-2 transport protocol. To transmit an

ISO15765-2 message, the SAINT is able to construct the necessary CAN/CANFD frames, receive and process the flow

control frames from the receiving device, and handle consecutive frame timing. The SAINT is capable of processing 1

ISO15765-2 message (up to 4K) from the host / 1ms loop. To receive an ISO15765-2 message, the SAINT is able to send

the flow control frame and reconstruct the message from the multiple CAN/CANFD frames.

 If your application does not use the SAINT Bus Engine to communicate with the SAINT please see the section on block

transfer for additional information on how to construct messages that are greater than 60 bytes.

In this section “CAN” my be used to refer to both CAN and CANFD.

6.8 Step 1 – Configure the SAINT

6.8.1 Enable the protocols

By default, CAN 1, CAN 2, ISO15675-2 1, ISO15765-2 2, CANFD 1, CANFD 2, ISO15675-2 FD1, and ISO15765-2

FD2 are all enabled. If you are working with some application that has specifically enabled only certain protocols, it may

be necessary to re-enable the CAN/CANFD and ISO15765-2 protocols. Use the 08 A3 message as defined in the SAINT

Configuration section of this document. To enable all of these protocols send an 08 A3 30 38 50 58 C0 C8 D0 D8

message.

6.8.2 Configure the CAN/CANFD channel

You must configure the CAN/CANFD channel that you intent to use. See the previous sections on CAN/CANFD for

details on how to make each configuration.

• Configure the baud rate.

• Configure the CAN transceiver (single wire, dual wire or fault tolerant) being used.

• Configure any special CAN functions.

These configurations will remain in effect until the SAINT hardware is reset or a new configuration is set.

6.8.3 Configure the SAINT for ISO15765-2

You must configure the SAINT so that it knows the information necessary to transmit and receive a message using the

ISO15765-2 transport layer. This configuration is done using the following commands:

SAINT

Programming Reference 03/03/20 Page 47

for CAN1:

C4 06 XX YY ID1 ID2 [ID3 ID4] [XD]opt configure the transmit message options with the expected receiving devices

flow control ID

C4 07 XX ID1 ID2 [ID3 ID4] [XD] opt ID1m ID2m [ID3m ID4m]opt [XDm]opt- configure the receive message options

to specify which IDs will be ISO message

C4 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt – set the receiving options to specify the flow control message ID to send

(when the Saint is receiving an IOS15765-2 message) and other options

for CAN 2:

CC 06 XX YY ID1 ID2 [ID3 ID4] [XD]opt configure the transmit message options with the expected receiving devices

flow control ID

CC 07 XX ID1 ID2 [ID3 ID4] [XD] opt ID1m ID2m [ID3m ID4m]opt [XDm]opt- configure the receive message options

to specify which IDs will be ISO message

CC 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt – set the receiving options to specify the flow control message ID and

other options

For CANFD1 replace C4 with 34. For CANFD2 replace CC with 3C.

6.8.3.1 Configuration for Transmitting ISO15765-2 messages

To transmit a message using the ISO15765-2 transport protocol, the flowing items must be configured:

• Should transmit frames be padded with 0x00?

• Does the transmit message CAN ID include an ISO15765-2 extended ID byte?

• Should the STmin received in the flow control message be overridden? If so, use what value?

• What is the receiver’s flow control message CAN ID?

These configurations will remain in effect until the SAINT hardware is reset, a new configuration is set, or the

configuration is reset.

The configuration message has the following format:

CAN 1: C4 06 XX YY ID1 ID2 [ID3 ID4]opt [XD]opt

CAN 2: CC 06 XX YY ID1 ID2 [ID3 ID4]opt [XD]opt

CANFD 1: 34 06 XX YY ID1 ID2 [ID3 ID4]opt [XD]opt

CANFD 2: 3C 06 XX YY ID1 ID2 [ID3 ID4]opt [XD]opt

Where:

XX is the ISO15765-2 TX option byte

SAINT

Programming Reference 03/03/20 Page 48

bit 0 = 0: no frame padding bit 0 = 1: frame padding with 0x00s

bit 1 = 0: use flow control STmin bit 1 = 1: override flow control STmin with YY value

bit 2 = 0: tx msg contains no ISO15765-2 extended ID bit 2 = 1: tx msg contains an ISO15765-2 extended ID

bit 3 = 0: display both individual CAN frames and the ISO TP message bit 3 = 1: display only the ISO TP message

bit 4-7 = 0

YY is the value used for STmin in ms if byte XX, bit 1 = 1

ID1 ID2 [ID3 ID4]opt [XD]opt is the flow control CAN message ID. This tells the Saint the CAN ID of the expected

flow control message. This ID definition must be in one of the following formats:

• 11 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2 (byte XX bit 2 = 0)

• 11 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 XD (byte XX bit 2 = 1)

• 29 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2 ID3 ID4 with bit7 of ID1 = 1 (byte XX bit 2 = 0)

• 29 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 ID3 ID4 XD with bit7 of ID1 = 1 (byte XX bit 2 = 1)

The CAN message ID definition ID1 ID2 ID3 ID4 is consistent with the SAINT’s normal CAN message ID definition.

For CANFD1 replace C4 with 34. For CANFD2 replace CC with 3C.

6.8.3.2 Configuration for Receiving ISO15765-2 messages

To receive a message using the ISO15765-2 transport protocol, the flowing items must be configured:

• What CAN IDs should be interpreted as ISO15765-2 transport protocol frames?

• When an ISO15765-2 transport protocol first frame is received, should the SAINT send a flow control frame?

• If so, what is the flow control frame CAN ID?

• Should the flow control frame be padded with 0x00?

• What is the FS (flow status) value?

• What is the BS (block size) value?

• What is the STmin (separation time) value?

These configurations will remain in effect until the SAINT hardware is reset, a new configuration is set, or the

configuration is reset.

The receive message configuration message has the following format:

CAN 1: C4 07 XX ID1 ID2 [ID3 ID4]opt [XD]opt ID1m ID2m [ID3m ID4m]opt [XDm]opt

CAN 2: CC 07 XX ID1 ID2 [ID3 ID4]opt [XD]opt ID1m ID2m [ID3m ID4m]opt [XDm]opt

SAINT

Programming Reference 03/03/20 Page 49

CANFD 1: 34 07 XX ID1 ID2 [ID3 ID4]opt [XD]opt ID1m ID2m [ID3m ID4m]opt [XDm]opt

CANFD 2: 3C 07 XX ID1 ID2 [ID3 ID4]opt [XD]opt ID1m ID2m [ID3m ID4m]opt [XDm]opt

Where:

XX = 0x00 : individual CAN frames will be displayed as well as the ISO TP message

XX = 0x01 : only the ISO TP message will be displayed

ID1 ID2 [ID3 ID4]opt [XD]opt specifies the ID(s) to be interpreted as ISO15765-2 messages (after the mask is

applied). This ID definition must be in one of the following formats:

• 11 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2

• 11 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 XD

• 29 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2 ID3 ID4 with bit7 of ID1 = 1

• 29 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 ID3 ID4 XD with bit7 of ID1 = 1

The CAN message ID definition ID1 ID2 ID3 ID4 is consistent with the SAINT’s normal CAN message ID definition.

ID1m ID2m [ID3m ID4m]opt [XDm]opt is the bit mask for filtering the ID. A bit value of 1 means the associated bit

in the RX CAN ID will be compared. A bit value of 0 means the associated bit in the RX CAN ID will not be compared.

If a flow control frame is to be sent by the SAINT in response to a received ISO15765-2 first frame, the flow control

frame parameters must be configured. The flow control frame configuration has the following format:

CAN 1: C4 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt

CAN 2: CC 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt

CANFD 1: 34 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt

CANFD 2: 3C 08 XX YY ZZ ID1 ID2 [ID3 ID4] [XD]opt

Where:

XX is the ISO15765-2 option byte

bit 0 = 0: no frame padding bit 0 = 1: frame padding with 0x00s

bit 1-7 = 0:

Note: only FS = 0 clear to send consecutive frames is supported at this time.

YY is the value used for BS (block size)

ZZ is the value used for STmin (separation time)

ID1 ID2 [ID3 ID4]opt [XD]opt is the flow control CAN message ID. This ID definition must be in one of the following

formats:

• 11 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2

SAINT

Programming Reference 03/03/20 Page 50

• 11 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 XD

• 29 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2 ID3 ID4 with bit7 of ID1 = 1

• 29 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 ID3 ID4 XD with bit7 of ID1 = 1

The CAN message ID definition ID1 ID2 ID3 ID4 is consistent with the SAINT’s normal CAN message ID definition.

For CANFD1 replace C4 with 34. For CANFD2 replace CC with 3C.

6.9 Step 2 – Send/Receive the ISO15765-2 message

The ISO15765-2 message sent to the SAINT should contain only the CAN message ID, the optional ISO15765-2

extended ID, and the data. The SAINT will determine the length of the message based on the number of data bytes it has

been sent. The SAINT will format each frame based on how it has been configured and insert the PCI bytes before it

transmits the frames onto the CAN bus. Likewise, when a ISO15765-2 message is received on the CAN bus, the SAINT

will reconstruct the message and remove the PCI bytes. The following is the format for an ISO15765-2 message:

CAN 1: C0 ID1 ID2 [ID3 ID4]opt [XD]opt D1 D2 D3 … D4095 (up to 4095 bytes)

CAN 2: C8 ID1 ID2 [ID3 ID4]opt [XD]opt D1 D2 D3 … D4095 (up to 4095 bytes)

CANFD 1: 30 ID1 ID2 [ID3 ID4]opt [XD]opt D1 D2 D3 … D4095 (up to 4095 bytes)

CANFD 2: 38 ID1 ID2 [ID3 ID4]opt [XD]opt D1 D2 D3 … D4095 (up to 4095 bytes)

Where:

ID1 ID2 [ID3 ID4]opt [XD]opt is the message ID. This ID definition must be in one of the following formats:

• 11 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2

• 11 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 XD

• 29 bit CAN ID with no ISO15765-2 extended ID: ID1 ID2 ID3 ID4 with bit7 of ID1 = 1

• 29 bit CAN ID with an ISO15765-2 extended ID: ID1 ID2 ID3 ID4 XD with bit7 of ID1 = 1

The CAN message ID definition ID1 ID2 ID3 ID4 is consistent with the SAINT’s normal CAN message ID definition.

D1 D2 D3 … D4095 (up to 4095 bytes) is the data.

6.10 Step 3 – Evaluate the response code

A user should pay attention to any operational warning code that get set during ISO15765-2 operation. These codes are

defined in the 08 A1 SAINT Configuration section of this document.

SAINT

Programming Reference 03/03/20 Page 51

Op Warning

Code

Definition

C0 SAINT buffer used to store a received ISO15765-2 message is busy and the message has not

been stored. (The individual 5X CAN frames will still be displayed but there will be no

associated CX message.)

C1 The SAINT TX FIFO is full and the SAINT has not been able to transmit the required flow

control frame.

The SAINT will provide either an error response or a successful transmission response. Following is the format for the

response message:

CAN/CANFD 1: C6/C7 EE RC

CAN/CANFD 2: CE/CF EE RC

RC Response Code Definition

00 Successful Transmission

01 SAINT could not write to transmit FIFO – message is discarded

02 SAINT did not receive the defined flow control response to the first frame or consecutive frame block –

message is discarded

03 SAINT is unable to successfully transmit on the bus – message is discarded

04 SAINT has not been configured to transmit an ISO15765-2 message – message is discarded

05 The SAINT Bus Engine messages to the SAINT are out of order – message is discarded

06 The CAN packet function is busy – message is discarded

6.11 Clear the ISO15765-2 Configuration

To clear the ISO 15765-2 TX Configuration send the following message:

CAN 1: C4 06 FF

CAN 2: CC 06 FF

To clear the ISO 15765-2 RX Configuration send the following message:

CAN 1: C4 08 FF

CAN 2: CC 08 FF

SAINT

Programming Reference 03/03/20 Page 52

6.12 Examples

6.12.1 Transmit Examples

6.12.1.1 Example 1 – 11 bit ID, no extended ID, no padding, no override

 Send the following ISO15765-2 message on CAN1:

• Message ID: 0x7E0 Message Data: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

• no padding

• use flow control STmin value

• expect flow control from message ID: 0x7E8

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 TX function: 0xC4 06 00 00 07 E8

3. Send the message: 0xC0 07 E0 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

4. Check the response from the SAINT to make sure the message transmitted successfully: 0xC7 EE 00

Message Monitor Example:

C7 06 00 00 07 E8 Command from PC to SAINT HW to config ISO15765-2 function

53 07 E0 10 0F 01 02 03 04 05 06 SAINT sends first frame to product

51 07 E8 30 00 00 Product responds with flow control frame

53 07 E0 21 07 08 09 0A 0B 0C 0D SAINT continues with consecutive frame

53 07 E0 22 0E 0F SAINT continues with consecutive frame

C3 07 E0 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

C7 EE 00 SAINT HW notifies PC that the ISO message has transmitted successfully

6.12.1.2 Example 2 – 29 bit ID, no extended ID, padding and override

 Send the following ISO15765-2 message on CAN1:

• Message ID: 0x01001020 Message Data: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

• padding

• use STmin of 10ms

• expect flow control from message ID: 0x01081020

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 TX function: 0xC4 06 03 0A 81 08 10 20

3. Send the message: 0xC0 81 00 10 20 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

4. Check the response from the SAINT to make sure the message transmitted successfully: 0xC7 EE 00

Message Monitor Example:

SAINT

Programming Reference 03/03/20 Page 53

C7 06 03 0A 81 08 10 20 Command from PC to SAINT HW to config ISO15765-2 function

53 81 00 10 20 10 0F 01 02 03 04 05 06 SAINT sends first frame to product

51 81 08 10 20 30 00 00 00 00 00 00 00 Product responds with flow control frame

53 81 00 10 20 21 07 08 09 0A 0B 0C 0D SAINT continues with consecutive frame

53 81 00 10 20 22 0E 0F 00 00 00 00 00 SAINT continues with consecutive frame

C3 81 00 10 20 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

C7 EE 00 SAINT HW notifies PC that the ISO message has transmitted successfully

6.12.1.3 Example 3 – 11 bit ID, extended ID, padding, no override

 Send the following ISO15765-2 message on CAN2:

• Message ID: 0x7DF, Extended ID: 0xFE Message Data: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

• padding

• use flow control STmin value

• expect flow control from message ID: 0x7E8, Extended ID: 0xF0

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN2 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 TX function: 0xCC 06 05 00 07 E8 F0

3. Send the message: 0xC8 07 DF FE 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

4. Check the response from the SAINT to make sure the message transmitted successfully: 0xCF EE 00

Message Monitor Example:

CF 06 05 00 07 E8 F0 Command from PC to SAINT HW to config ISO15765-2 function

5B 07 DF FE 10 0F 01 02 03 04 05 SAINT sends first frame to product

59 07 E8 F0 30 00 00 00 00 00 00 Product responds with flow control frame

5B 07 DF FE 21 06 07 08 09 0A 0B SAINT continues with consecutive frame

5B 07 DF FE 22 0C 0D 0E 0F 00 00 SAINT continues with consecutive frame

CB 07 DF FE 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

CF EE 00 SAINT HW notifies PC that the ISO message has transmitted successfully

6.12.1.4 Example 4 – 29 bit ID, no extended ID, padding, single frame

 Send the following ISO15765-2 message on CAN1:

• Message ID: 0x01001020 Message Data: 01 02 03 04 05

• padding

• use flow control STmin value

• expect flow control from message ID: 0x01081020

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

SAINT

Programming Reference 03/03/20 Page 54

2. Configure the ISO15765-2 TX function: 0xC4 06 01 00 81 08 10 20

3. Send the message: 0xC0 81 00 10 20 01 02 03 04 05

4. Check the response from the SAINT to make sure the message transmitted successfully: 0xC7 EE 00

Message Monitor Example:

C7 06 01 00 81 08 10 20 Command from PC to SAINT HW to config ISO15765-2 function

53 81 00 10 20 05 01 02 03 04 05 00 00 SAINT sends single frame to product

C3 81 00 10 20 01 02 03 04 05 Complete message in monitor

C7 EE 00 SAINT HW notifies PC that the ISO message has transmitted successfully

6.12.2 Receive Examples

6.12.2.1 Example 1 – 11 bit ID, no extended ID, no padding, no override

 Receive the following ISO15765-2 messages on CAN1:

• receive from Message ID: 0x7E8

• use flow control message ID: 0x7E0

• no FC padding

• STmin, BS, and FS = 0

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 RX function: 0xC4 07 00 07 E8 FF FF

3. Configure the ISO15765-2 FC function: 0xC4 08 00 00 00 07 E0

4. Receive the message: 0xC0 07 E8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Message Monitor Example:

C7 07 00 07 E8 FF FF Command from PC to SAINT HW to config ISO15765-2 RX function

C7 08 00 00 00 07 E0 FF FF Command from PC to SAINT HW to config ISO15765-2 RX function

51 07 E8 10 0F 01 02 03 04 05 06 Product sends first frame to SAINT

53 07 E0 30 00 00 SAINT responds with flow control frame

51 07 E8 21 07 08 09 0A 0B 0C 0D Product continues with consecutive frame

51 07 E8 22 0E 0F Product continues with consecutive frame

C1 07 E8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

6.12.2.2 Example 2 – 29 bit ID, no extended ID, padding

 Receive the following ISO15765-2 messages on CAN 1:

• receive from Message ID: 0x01001020

• use flow control message ID: 0x01081020

• FC padding

SAINT

Programming Reference 03/03/20 Page 55

• STmin = 10ms, BS = 0, and FS = 0

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 RX function: 0xC4 07 00 81 00 10 20 FF FF FF FF

3. Configure the ISO15765-2 FC function: 0xC4 08 01 00 0A 81 08 10 20

4. Receive the message: 0xC0 81 00 10 20 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Message Monitor Example:

C7 07 00 81 00 10 20 FF FF FF FF Command from PC to SAINT HW to config ISO15765-2 RX function

C7 08 01 00 0A 81 08 10 20 Command from PC to SAINT HW to config ISO15765-2 RX function

51 81 00 10 20 10 0F 01 02 03 04 05 06 Product sends first frame to SAINT

53 81 08 10 20 30 00 0A 00 00 00 00 00 SAINT responds with flow control frame

51 81 00 10 20 21 07 08 09 0A 0B 0C 0D Product continues with consecutive frame

51 81 00 10 20 22 0E 0F 00 00 00 00 00 Product continues with consecutive frame

C1 81 00 10 20 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

6.12.2.3 Example 3 – 11 bit ID, extended ID, padding, no override

 Receive the following ISO15765-2 messages on CAN 2:

• receive from Message ID: 0x7DF, Extended ID: 0xFE

• use flow control message ID: 0x7E8, Extended ID: 0xF0

• FC padding

• STmin, BS, and FS = 0

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN2 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 RX function: 0xCC 07 00 07 DF FE FF FF FF

3. Configure the ISO15765-2 FC function: 0xCC 08 01 00 00 07 E8 F0

4. Receive the message: 0xC8 07 DF FE 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Message Monitor Example:

CC 07 00 07 DF FE FF FF FF Command from PC to SAINT HW to config ISO15765-2 RX function

CC 08 01 00 00 07 E8 F0 Command from PC to SAINT HW to config ISO15765-2 RX function

59 07 DF FE 10 0F 01 02 03 04 05 Product sends first frame to SAINT

5B 07 E8 F0 30 00 00 00 00 00 00 SAINT responds with flow control frame

59 07 DF FE 21 06 07 08 09 0A 0B Product continues with consecutive frame

59 07 DF FE 22 0C 0D 0E 0F 00 00 Product continues with consecutive frame

C9 07 DF FE 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Complete message in monitor

SAINT

Programming Reference 03/03/20 Page 56

6.12.2.4 Example 4 – 29 bit ID, no extended ID, padding, single frame

Receive the following ISO15765-2 messages on CAN 1:

• receive from Message ID: 0x01001020

• use flow control message ID: 0x01081020

• FC padding

• STmin, BS, and FS = 0

Perform the following steps to configure the SAINT:

1. Configure the SAINT CAN1 baud rate and transceiver (see previous sections for instruction)

2. Configure the ISO15765-2 RX function: 0xC4 07 00 81 00 10 20 FF FF FF FF

3. Configure the ISO15765-2 FC function: 0xC4 08 01 00 00 81 08 10 20

4. Receive the message: 0xC0 81 00 10 20 01 02 03 04 05

Message Monitor Example:

C7 07 00 81 00 10 20 FF FF FF FF Command from PC to SAINT HW to config ISO15765-2 RX function

C7 08 01 00 00 81 08 10 20 Command from PC to SAINT HW to config ISO15765-2 RX function

C1 81 00 10 20 01 02 03 04 05 Complete message in monitor

SAINT

Programming Reference 03/03/20 Page 57

6.13 Important Notes

• Only a single CAN channel can be configured at a time for ISO15765-2. If you configure CAN1 and then

configure CAN2, only CAN2 will be configured.

• As individual CAN frames are transmitted or received by the SAINT, these frames will be sent back to the host

just as any other transmitted/received frame would be sent back to the host. These frames will have the normal

SAINT headers for CAN ($50/58 derivatives). The exception is that single frame ISO15765-2 received

messages will only be displayed as a C0/C8 message.

• C0/C8 messages will not necessarily be transmitted in the order they are received from the host in relation to raw

CAN frames ($50/$58) If this is a problem, you should always make sure that your raw messages have been

transmitted successfully before you send your ISO15765-2 message to the SAINT.

• Raw CAN/CANFD messages and ISO15765-2 messages may be used together.

• There is a single buffer used for both transmitted and received ISO15765-2 messages on the SAINT hardware.

An ISO15765-2 message may either be in the process of being transmitted or received, but the SAINT cannot do

both at the same time.

SAINT

Programming Reference 03/03/20 Page 58

7 Class 2 (Saint2 only)

7.1 Class 2 Messages

Not applicable to SAINT3.

The following messages may be used to send a Class 2 commands and messages. Class 2 commands are used for

configuring or commanding the DLC. Class 2 messages include functional, physical, and block messages. Note: the

ESCAPE characters (section 4.1) must be inserted at the end of every transmitted message to the SAINT.

7.1.1 Class 2 Commands

The following is the format for sending a Class 2 Command:

Header ID Description Data Bytes

64h 01h Report Error 1 byte Completion Code (See 7.1.3.1)

64h 02h SPI Bus Error 1 byte Error Code (See 7.1.3.2)

64h 64h Operate Bus at Normal Speed (10.4 KB/s) (default) None

64h 65h Operate Bus at High Speed (41.6 KB/s) None

64h 66h Generate a Class 2 Break Signal None

7.1.2 Transmitted Class 2 Messages

The following is the format for sending a Class 2 message:

60h Priority/Header Target Source ID N Data Bytes

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6  (5+N)

The minimum accepted Class 2 message length is 3 bytes and the longest is 8000 bytes.

7.1.3 Received Class 2 Messages

The following is the format of a received Class 2 message without time stamp information:

60h Priority

Header

Target Source ID N Data Bytes Completion

Code

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6  (5+N) Byte 6 + N

SAINT

Programming Reference 03/03/20 Page 59

The following is the format of a received Class 2 message with time stamp information:

61h Priority

Header

Target Source ID N Data Bytes Completion

Code

Time

MSB

Time

LSB

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6  (5+N) Byte 6 + N 7+N 8+N

The following is the format of a received Class 2 Error message with time stamp information:

65h 01 Completion

Code

Time

MSB

Time

LSB

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

7.1.3.1 Completion Code

The following is the definition of the completion code included with all reported Class 2 messages. The completion code

in the received messages comes from the DLC chip. For more detail refer to the DLC Application document (XDE

3003.)

Bit 7 Errors in Received Message

 0 No Error Detected.

 1 Error(s) detected. When set, certain errors occurred in the reception of this message (see description for bits 1

and 0). If not set, then bits 1 and 0 are also 0.

Bit 6 RFIFO Overrun

 0 No overrun.

 1 A receiver FIFO overrun was detected and data was lost.

Bit 5 Bit 4 Transmitter Action

 0 0 Transmitter not involved.

 0 1 Transmitter under run. Should occur only when sending a Class 2 block message and the host

 does not keep up with the data requirements.

 1 0 Transmitter lost arbitration on this message.

 1 1 Transmit successful.

Bit 3 In-frame response

 0 This message was not an in-frame response.

 1 This message was an in-frame response.

Bit 2 In-frame response with/without CRC

 0 This in-frame response does not contain a CRC.

 1 This in-frame response contains a CRC.

Bit 1 Bit 0 Error Code

 0 0 CRC error.

 0 1 Incomplete byte received.

 1 0 Bit timing error.

SAINT

Programming Reference 03/03/20 Page 60

 1 1 Break symbol received.

7.1.3.2 SPI Error Codes

The following is the definition of the SPI error code associated with all reported SPI error messages. Most of these errors

are Class 2 errors that manifest themselves when the main micro is communicating with the DLC transceiver.

Bit 7 Unused

Bit 6 Rx of Tx

 0 No Error.

 1 A transmitted message was not received on the bus. This error typically indicates that the Class2 bus is shorted

to another signal.

Bit 5 Other

 0 No Error.

 1 All other SPI errors

Bit 4 Unused

Bit 3 Tx Underrun

 0 No Error.

 1 DLC Tx Underrun. (Determined from completion code)

Bit 2 Message too big

 0 No Error.

 1 Too many bytes in Class 2 message

Bit 1 Unused

Bit 0 Receive

 0 No Error.

 1 Rx error on SPI bus. This error occurs when a new data byte is received, but a previously received data byte has

not been read out of the receive buffer. The old data in the receive buffer will be overwritten and irretrievably lost.

7.1.3.3 Block Message Support

Please note the following differences when using Class2 firmware 3.0 or later. Firmware 3.0 and later has the support for

Block messages. Therefore, the decoding for Rx/Tx (bit1 in header byte) is no longer valid in the header byte. It is

recommended to use the Completion Code to check if the message was transmitted (30h) or received (00h). Also, note

that “Echo Off” command (08 89) is not supported. So, all transmitted Class2 messages are received. The changes are

due to the fact that the SAINT cannot determine if the incoming message was transmitted or received until completely

receiving the entire message.

SAINT

Programming Reference 03/03/20 Page 61

8 IIC

8.1 Overview

IIC functionality is not provided in the uS3. Not yet implemented in Saint3 Pro

The Saint2 can function in either active participant mode or passive monitor mode. When the Saint2 is acting as a slave

or master it is an active participant on the bus, but in the original Saint it functioned as a passive participant just

“sniffing” the data. IIC is not yet implemented in the Saint3.

Passive Bus Monitor Mode

This is the “sniffer” or passive monitor functionality for the Saint2, which is similar to the IIC support provided in the

original Saint 1. To use this feature on the Saint 2, connection to the internal header pins is required. The IIC clock and

data pins should be connected as follows:

J3-5

1K
DATA

Saint2 Internal

Header

Device

(or Jack on Saint)

J3-6

1K
CLOCK

The device connections can simply be “pigtailed” out of the Saint2 or, for

more permanent use, connectors (such as Banana Jacks) can be installed

in the end plate of the Saint2 box. (For permanent connections, it is

recommended to mount any additional connectors to the end plate with

the D-Type connectors. This allows the board, ,end plate, and any

custom wiring to be removed as a single assembly).

Important Notes:

1) Failure to use the 1Kohm current limiting resistors can result in damage to the Saint2 or the attached device.

2) Host (PC) communication in this mode is USB ONLY! (RS-232 communication is disabled upon entering this

mode)

The following command may be used to begin monitoring IIC traffic.

SAINT

Programming Reference 03/03/20 Page 62

Header ID Description Data Bytes

24h 01h Begin IIC Monitor Mode

LED #5 will blink at 1Hz when in IIC Monitor Mode. To exit the IIC Monitor Mode use a hardware reset.

IIC Received Message Format with Time Stamp

21h Address N Data Bytes Completion Code Time Stamp Bytes

byte 1 byte 2 Byte 3 … Byte N Byte N + 1 Byte N+2 Byte N+3

Completion Code

Bit2 Bit 1 Bit 0 Error Code

0 0 1 Repeated Start Condition

0 1 0 NACK received in message

1 0 0 No stop condition after 50 consecutive bytes (User block 3.10.0 and later)

Active Participant Mode

The Saint2 also has an active participant mode in which the Saint2 acts as a slave or a master, and please note that this

mode is completely different than monitor mode. The initial 7 bit IIC address is set to 0x55 when in master mode and

0x65 when in slave mode. The Saint2 IIC module can be used to test devices such as CD player mechanisms as they

would work within a radio.

Note: In order to have successful IIC communication your device must meet the following conditions:

5. The device must provide the pull up resistors for SDA and SCL. If these pullups for SDA and SCL are not in the

device you are testing , you must provide pull ups externally to the appropriate supply voltage for your device.

6. The device must be able to provides acknowledgments to the SAINT2 IIC bytes. The IIC bus will not operate

properly unless there is both a master and a slave communicating on the bus.

8.1.1 IIC Hardware

SAINT

Programming Reference 03/03/20 Page 63

For Saint2 hardware version 1.1 (silver box) you must connect to the internal header pins shown below. For Saint2

hardware version 1.2 (black box) the SDA and SCL signals are available on the DB-25, pins 21 and 15 respectively.

Your Saint2 hardware version can be found on the label on the top of the box.

Name Saint 2 Pin Number Description

SDA J4.29 I2C Data

SCL J4.27 I2C Clock

8.2 IIC Commands

IIC configuration command messages adhere to the following general format:

From PC:

 IIC Configuration Command Message: 20 XX2 XX3 XX4 … XXn

 Byte 1: Saint IIC Protocol Identifier for IIC (0x20)

 Byte 2: IIC message type (see below for types)

 Bytes 3-n: Command to be parsed and carried out by Saint 2

 Last 2 Bytes: End of SAINT message

8.2.1 Configure IIC Master Polling

Configure IIC Master Polling: 20 92 AA CC

 Byte 1: Saint IIC Protocol Identifier for IIC (0x20)

 Byte 2: IIC message type for polling (0x92)

Byte 3: 8 bit representation of the Saint 2 7-bit IIC slave device address to be polled (LSB

must be 1) (i.e., 7-bit address 001 1000 (18h) becomes 8-bit representation 0011 0001 (31h))

Byte 4: Configuration byte. A value of 0 turns polling off. A value of 1 turns polling on.

 Last 2 Bytes: End of SAINT message

Note: The slave address must be included since the master produces the address it wishes to address.

Note: The slave address is polled every 1 second by the master.

SAINT

Programming Reference 03/03/20 Page 64

Note: If the slave does not acknowledge any of the data bytes, a message with the following format

will be sent back:

20 91 F0 MM1 … MMN,

where MM1 … MMN are the data bytes of the failing IIC message.

8.2.2 Set Device Address

20 A0 XX – sets the IIC Device Address to XX (7-bit address, XX <= 7F)

8.2.3 Get IIC Device Address

20 A1 – returns current 7-bit address to Saint Bus Monitor as:

20 A1 F1 XX’. where XX is the address.

8.2.4 Set IIC Mode

20 DD 01 – sets the IIC Device to Master Mode

20 DD 00 – sets the IIC Device to Slave Mode

20 DD 02 – sets the IIC Device to Slave Mode with ACK disabled

8.2.5 Set IIC Baud Rate

20 DE 00 – sets the IIC Baud Rate to 400 Khz

20 DE 01 – sets the IIC Baud Rate to 100 Khz

20 DE 02 – sets the IIC Baud Rate to 256 Khz

8.2.6 Disable ACKs

20 DF 00 – ACKs are enabled (default)

20 DF 01 – disable ACKs

SAINT

Programming Reference 03/03/20 Page 65

8.3 IIC Data Messages

Note: The Saint 2 can act as a slave or a master. When it is acting as a slave, it will use the slave-transmitter and slave-

receiver message formats. When it is acting as a master, it will use the master-transmitter and master-receiver

message formats.

Note: There is no status byte for receipt of IIC messages.

Note: The maximum length of the IIC data bytes is limited by the maximum Saint 2 message length.

SAINT

Programming Reference 03/03/20 Page 66

8.3.1 Request to transmit an IIC message as slave-transmitter

Send IIC Slave Transmit Message: 20 90 XX3 XX4 XX5 … XXn

 Byte 1: SAINT IIC Protocol Identifier (0x20)

 Byte 2: Message type for IIC message (0x90)

 Bytes 3-n: Data to be sent

 Last 2 Bytes: End of SAINT message

Note: The data in bytes 3-n should not include the device address, since the IIC master (not

the IIC slave) produces the address.

Note: There is no echo back to acknowledge transmit when the master actually reads from the

slave.

8.3.2 Receipt of IIC message as slave receiver

IIC Slave Received Message: 20 90 XX3 XX4 XX5 … XXn

Byte 1: SAINT IIC Protocol Identifier (0x20)

 Byte 2: Message type for IIC Message (0x90)

Byte 3: 8-bit representation of the Saint 2 7-bit IIC slave device address to (LSB must be 0)

(i.e., 7-bit address 001 1000 (18h) becomes 8-bit representation 0011 0000 (30h))

 Bytes 4-n: Data received

 Last 2 Bytes: End of SAINT message

SAINT

Programming Reference 03/03/20 Page 67

8.3.3 Request to transmit an IIC message as master-transmitter

Send IIC Master Transmit Message: 20 90 AA XX4 XX5 … XXn

 Byte 1: SAINT IIC Protocol Identifier (0x20)

 Byte 2: Message type for IIC message (0x90)

Byte 3: 8-bit representation of the Saint 2 7-bit IIC slave device address to (LSB must be 0)

(i.e., 7-bit address 001 1000 (18h) becomes 8-bit representation 0011 0000 (30h))

 Bytes 4-n: Data to be sent

 Last 2 Bytes: End of SAINT message

Note: The slave address must be included since the master produces the address it wishes to

address.

Note: On successful transmission there is no echo back. The message will only be viewed on

the receiving end.

Note: If the slave does not acknowledge any of the data bytes, a message with the following

format will be sent back:

20 91 F0 MM1 … MMN,

where MM1 … MMN are the data bytes of the failing IIC message.

Request to receive an IIC message as master-receiver

Request to Read from Slave Message: 20 90 AA NN

Byte 1: SAINT IIC Protocol Identifier (0x20)

 Byte 2: Message type for IIC Message (0x90)

Byte 3: 8 bit representation of the Saint 2 7-bit IIC slave device address to be polled (LSB must be 1)

(i.e., 7-bit address 001 1000 (18h) becomes 8-bit representation 0011 0001 (31h))

 Byte 4: Number of data bytes to read from the slave

 Last 2 Bytes: End of SAINT message

Note: If byte 4 is 0, instead of reading 0 bytes, the master will read 1 byte from the slave. The master

will interrupt this byte as N (the number of remaining bytes to read). The master will then read N more

data bytes from the slave.

Note: Since the master is in charge of driving the IIC bus, it must request to read data from the slave.

The slave has no way of requesting it be addressed so that it can send.

SAINT

Programming Reference 03/03/20 Page 68

Note: The above message requests a read be performed as a master-receiver. The actual data read will

be sent back in the message below.

Note: If the slave does not acknowledge its address on the bus, a message with the following format

will be sent back:

20 91 F0 MM1 … MMN,

where MM1 … MMN are the data bytes of the failing IIC message.

IIC Master-Received Data Message: 20 90 XX3 XX4 XX5 … XXn

Byte 1: SAINT IIC Protocol Identifier (0x20)

 Byte 2: Message type for IIC Message (0x90)

Byte 3: 8-bit representation of the Saint 2 7-bit IIC slave device address (i.e., 7-bit address 001 1000

(18h) becomes 8-bit representation 0011 0001 (31h))

 Bytes 4-n: Data received

 Last 2 Bytes: End of SAINT message

SAINT

Programming Reference 03/03/20 Page 69

9 Keyword 2000

Keyword 2000 hardware is not provided in the uS3. Keyword 2000 functionality has not been released for the S3 Pro.

Keyword 2000 for the Saint 2 is an enhanced version of the Keyword 2000 that was available on the Saint 1.

Some Key improvements are:

- Full length message support (up to the spec limit of 260 bytes)

- True 5 Baud initialization (“Active” baud rate detection)

- USB interface

- Expanded message corruption (forced error) capabilities

A completely new set of command IDs have been implemented for the Saint 2 to prevent potential conflicts from

divergent development on each platform. While many of the command functions are the same, others have been

modified to provide expanded capability and new commands have been added to accommodate new features.

To ensure compatibility with users legacy Saint 1 applications and files, the Saint 2 KW2K implementation also supports

the full Saint 1 Keyword 2000 command set (as of the Saint 1 Keyword 2000 Users Guide, Version A, Draft 7, 1/11/05).

Either or both command sets may be used. This manual only includes documentation for the new Saint 2 Keyword 2000

command set. Users may reference the afore mentioned Saint 1 document to obtain the legacy command set information.

Not yet released for the Saint3.

!!!!! IMPORTANT !!!!!

If using a Saint2, you MUST have hardware “Version 1.1” or higher to use it with Keyword 2000.

The hardware version number is listed on the bottom left corner of the front label. If the label does not indicate a

hardware version, it is Version 1.0 hardware and will NOT work properly for Keyword 2000.

If you need to use Keyword 2000 and have an incompatible version of the Saint 2, contact the manufacturer or email

support for upgrade/replacement options.

SAINT

Programming Reference 03/03/20 Page 70

9.1 Keyword 2000 – Application Notes

9.1.1 General Operation

9.1.1.1 Message Construction

All modes, except Direct Mode (2C A0 02), employ automated message construction to simplify use of the

protocol for manual/human operations (as was done in the Saint 1). The message header bytes and checksum are

automatically built based on the current configuration settings. Once properly configured, users only need to

provide the Saint 2 Header Byte (protocol ID) and the data portion of the message. The appropriate KW header

and checksum bytes will be automatically constructed in the message frame before it is transmitted on the bus.

The following is an example of the message construction performed using the default configuration settings (3

byte hdr, Tgt Addr=11, Src Addr=F1):

User/Host Msg: 28 AA

Resulting Bus Msg: 81 11 F1 AA 2D

Direct Mode does NOT employ any form of message construction. It is intended to provide users unrestricted

control of the message frame content. Message frames are delivered exactly as supplied (unmodified) directly to

the bus. The user is responsible for all message frame content including the header and checksum bytes.

9.1.2 Initialization

9.1.2.1 Client (Tester) Mode

Bus initialization is handled automatically by the Saint 2. Once the protocol configuration options are properly

set, the user need only send the desired KW message. The Saint 2 tracks the bus initialization state and, if

required, automatically performs the necessary initialization operations followed by the desired KW message.

The user does NOT need to perform bus initialization manually (i.e. by sending a “Start Comms” message).

If desired, the user may “manually” initialize the bus by sending the “Start Comms” (i.e. mode 81) message.

This will initialize the bus without sending any additional messages. (Note that a user supplied “Start Comms”

message is actually discarded by the Saint 2 and a new “Start Comms” message is rebuilt based on the

configured “Start Comms Header Type” and other applicable configuration settings.) If the bus is already

initialized and the “Start Comms” message is sent, the “Start Comms” message will be sent out on the bus as a

“normal” bus bearing message and NOT as a Fast Init (i.e. WITHOUT the preceding “wake up” pulse)

Checksum 3 byte header

Msg data

Saint Hdr (KW Protocol ID)

SAINT

Programming Reference 03/03/20 Page 71

NOTE: The “Stop Comms” and “Tester Present” (Keep Alive) messages can NOT be used to either manually

or automatically initialize the bus. These are treated as special messages by the Saint 2 and are prohibited from

being used for starting communications. All other bus bearing messages will initiate the automatic bus

initialization sequence. (Logically it does not make sense to send a “Stop Comms” message to start

communications and the “Tester Present” message is ONLY intended to be used after communication has been

established… not to start it.)

9.1.2.2 P2P Mode

Bus initialization is not required in this mode as the bus is considered always active (initialized). If the host/user

sends a “start comms” message, it will be transmitted on the bus as a normal KW msg (i.e. NOT as an Fast Init

sequence). Though not intended for use with this mode, the “Force Initialization” command is allowed and will

transmit the full initialization sequence (as configured) on the bus.

9.1.2.3 Direct Mode

Bus initialization can ONLY be initiated by using the “Force Initialization” command. All transmit messages

are treated as normal “bus bearing” messages and are delivered to the bus unmodified. They are not intercepted,

decoded, or checked and therefore, cannot be used to trigger an initialization operation. In this mode, the

host/user is completely responsible for initialization operations and bus state tracking.

9.1.3 Error Reporting

If multiple error conditions are detected, generally, only the first (most significant) error is reported. For

example, if a message is received with a “framing error”, this usually results in a checksum error as well. Only

the “framing error” will be reported as this is considered the primary, or “root” error condition. This strategy is

employed to prevent reporting of multiple related (cascading) error indications. Timing errors (P1-P4) are

always report as appropriate for the operational mode selected.

SAINT

Programming Reference 03/03/20 Page 72

9.2 Keyword 2000 Commands

The following commands may transmitted from the host interface to the SAINT 2:

Protocol Configuration Commands

Hdr ID Description Data Bytes

2Ch A0h Set Operating Mode 1 byte:
0x00 = Client (Tester) mode (default)

Behaves as a Tester device (i.e. scan tool) on a
“regular” KW bus. Obeys the rules of a Client
device per ISO 14230.

0x01 = "P2P" (Peer-to-Peer) mode
(formerly “Dedicated” mode – renamed for clarity)
This is a special mode for applications that
employ a dedicated “always on” KW link between
two devices (i.e. Peer to Peer). Behaves as an
ECU and obeys the rules of a Server device
except initialization operations are disabled and
the bus is treated as always "initialized".

0x02 = “Direct” (raw) Client mode
Similar to Client (Tester) mode above except:

• Host/User (Tx) messages are delivered
directly to the bus without modification (i.e. no
msg construction/checking).

• Initialization is strictly manual (non-automatic)

• Limited configuration settings apply.

Received messages are processed normally (per
KW protocol rules). Timing parameters (P1-4) are
enforced for both Tx & Rx messages.
Bus initialization can ONLY be performed using
the dedicated “Force Initialization” command (2C
B2). The host/user is entirely responsible for
message construction (incl. headers and
checksum), content, and initialization.
Several commands are either not applicable or
are limited in this mode due to redundant or non-
applicable functionality (primarily those affecting
msg content). These commands are denoted with
an asterisk “*” below the command code.
Commands with functionality that can only be
produced by the Saint 2 (i.e. by hardware/
firmware) are still applicable.

Note: This mode essentially bypasses the automated
message construction and is primarily intended
for host applications that require unrestricted
control of the KW message frame. Though added
primarily for J2534 support, it is available for use
in any application where direct control of the
message frame content is desired.

SAINT

Programming Reference 03/03/20 Page 73

2Ch A1h Set Initialization Mode 1 byte:
0x00 - Fast Init (default)
0x01 - 5 Baud
0x02 - Carb (not implemented)

2Ch A2h Set Baud Rate
(Applies to Fast Init only).

1-2 bytes:
Baud rate in hundreds units expressed in BCD .
Leading zeros are disregarded.
Range: 1k - 200k baud (in 100 baud steps)
Default = 10400 baud (spec compliant)

Examples:
2C A2 11 52 - set baud to 115200
2C A2 00 10 - set baud to 1000 (leading 0's ignored)
2C A2 or 2C A2 00 - set default baud rate

2Ch A3h

*
Set Header Type

1 byte:
0x00 = [Fmt] (len in Fmt byte)
0x01 = [Fmt][Len]
0x02 = [Fmt][Tgt][Src] (len in Fmt byte) (default)
0x03 = [Fmt][Tgt][Src][Len]

2Ch A4h

*
Set Tester Address 1 byte: Tester Address (default = 0xF1)

For Direct (Gateway) mode applies to initialization
only

2Ch A5h

*
Set ECU / 5 Baud Address 1 byte: ECU Address (default = 0x11)

For Direct (Gateway) mode applies to initialization
only

2Ch A6h

*
Set Addressing Mode 1 byte:

0x00 = Physical Addressing (default)
0x01 = Functional Addressing

2Ch ACh Set “Start Comms” Header
Type

Support for non-standard
KW2K implementations.
(The default (spec compliant)
setting should be used unless
specifically required.)

1 byte:
0x00 = [Fmt] (len in Fmt byte)
0x01 = [Fmt][Len]
0x02 = [Fmt][Tgt][Src] (len in Fmt byte) (default)
0x03 = [Fmt][Tgt][Src][Len]

Note: When the “Force Initialization” command is

used, this setting applies ONLY if the optional
substitute Start Comms message is NOT supplied
(otherwise the substitute message is used).

* - Not Applicable (ignored) in “Direct” Operational Mode (2C A0 02).

SAINT

Programming Reference 03/03/20 Page 74

Protocol Timing Configuration Commands
(IMPORTANT - It is the users’ responsibility to abide by the timing relationship

rules declared in the specifications. The Saint does NOT enforce inter-
relational rules, it only enforces the absolute min/max limits for each

parameter.)

Hdr ID Description Data Bytes

2Ch A7h Set P1 min/max

Server (ECU) interbyte time
limits.

2 bytes - aa bb:
aa - 0x00 = Set P1 min (default=5ms, 0x05)
 0x01 = Set P1 max (default=20ms, 0x14)
bb - time in ms. (0-20ms, 0x00-0x14)

2Ch A8h Set P2 min/max

Client (Tester) to Server
(ECU) or Server to Server
inter message time limits.

2 bytes - aa bb:
aa - 0x00=Set P2 min (default=25ms, 0x19)
 bb=time in ms. (0-127ms, 0x00-0x7F)
 - 0x01=Set P2 max (default=50ms, 0x02)
 bb=time in ms encoded as follows:
 0x01-0xF0: time = value*25.
 0xF1-0xFE: time = low nibble of value*256*25.
 0xFF: n/a (invalid)

2Ch A9h Set P3 min/max

Server (ECU) to Client
(Tester) inter message time
limits.

2 bytes - aa bb:
aa - 0x00=Set P3 min (default=55ms, 0x37)
 bb=time in ms, (0-127, 0x00-0x7F)
 - 0x01=Set P3 max (default=5120ms, 0x14)
 bb=time*250 in ms. (0-255, 0x00-0xFF) where:
 0-254, 0x00-0xFE = 0-63500ms
 255, 0xFF=infinity

2Ch AAh Set P4 min/max

Client (Tester) interbyte time
limits.

2 bytes - aa bb:
aa - 0x00=Set P4 min (default=5ms, 0x05)
 bb - time in ms. (0-19ms, 0x00-0x13)
aa - 0x01=Set P4 max (default=20ms, 0x14)
 bb - time in ms. (0-20ms, 0x00-0x14)

2Ch ABh Set Fast Init Wakeup Pattern
low time (TinitL)

1 byte: time in msec (5ms multiples). (Default=25ms,
0x19)
Values other than multiples of 5ms may be used but
will be rounded to the closest multiple.
The Wakeup Pattern time (TWup) is fixed at 50ms.
Setting the low period adjusts the high period
accordingly.
TIniH = TWup-TIniL = 50ms-TIniL

SAINT

Programming Reference 03/03/20 Page 75

General/Misc Control Commands

Hdr ID Description Data Bytes

2Ch B0h Enable/Disable Timing Error
Reporting (P1-P4)

1 byte:
0x00 = Disable
0x01 = Enable (default)

2Ch B1h Enable Tester Present (Keep
Alive) Periodic Message
(Period= P3max-1ms, per
specifications.)

1 byte:
0x00 - Disabled (default)
0x01 – Enabled

2Ch B2h Force Initialization

Forces a bus initialization
based on the current
configuration settings.

Optionally allows the user to
provide a substitute message
for the normal Fast Init “Start
Comms” message.

(optional) 1 to 259 bytes xx…xx:
 xx… - Fast Init “Start Comms” Substitute msg

Initialization will be performed without regard to the
current bus initialization state. P3min timing is
enforced before the initialization is allowed to begin.

If provided, the optional message bytes will be
substituted for the Fast Init “Start Comms” message.
The configuration must be previously set to use Fast
Init mode (default) before invoking this command or
the message will be discarded as the “Start Comms”
message does not apply to 5 Baud/CARB Inits.

Note: This command was primarily added to support

the “Direct” operating mode (2C A0 02) where
no other means to invoke initialization exist. It is
not required for the other “Operating” modes
(since their existing initialization techniques still
apply) but can be employed to invoke the
unique features of this command that are not
available with the normal initialization methods.

2Ch B3h Enable/Disable “Start of
Message” Reporting

(See “Commands Reported by
Saint 2” for a description of
this feature)

1 byte:
0x00 - Disabled (default)
0x01 – Enabled

2Ch B4h Enable/Disable 5 Baud Init
Key Byte reporting.

(See “Commands Reported by
Saint 2” for a description of
this feature)

1 byte:
0x00 – Disabled
0x01 – Enabled (default)

SAINT

Programming Reference 03/03/20 Page 76

Message Corruption (Forced Error) Commands

Hdr ID Description Data Bytes

2Ch C0h Disable Start Communications
message

Simulates a Fast Init error
scenario where the wakeup
pattern is sent without a
subsequent Start Comms
msg.

1 byte:
00 = Start Comm Msg Enabled (default)
01 = Disable Start Comm Msg

Note: This command will be overridden by the “Force

Initialization” command (2C B2) if the optional
Start Comms substitute message is supplied.
(i.e. assumes that if supplied, intent is to send
regardless of this command state.)

2Ch C1h

*
Forced Format Byte

Forces the use of a specified
Format Byte value.

2 bytes - aa bb:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)
bb - New Format Byte value. (default=0x00)

2Ch C2h

*
Forced Length Value

Forces the use of a specified
msg length value.
(Applied to either the Format
byte or optional Length byte
depending on header type.)

2 bytes - aa bb:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)
bb - New Length value. (default=0x00)

2Ch C3h

*
Forced Data Byte Value

Forces the use of a specified
value in the specified byte of
the data payload portion of the
message.
(Applies to data payload bytes
only, i.e. SID up to, but not
including, the checksum. If
specified byte number > last
data byte, no data is
modified.)

3 bytes - aa bb cc:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)
bb - Data payload byte number (base 0).
 (default=0x00)
cc - New data byte value. (default=0x00)

2Ch C4h

*
Forced Data Bit Error

Toggles the specified bit in the
specified byte of the data
payload portion of the
message.
(Applies to data payload bytes
only, i.e. SID up to, but not
including, the checksum. If the
specified byte number > last
data byte, no data is
modified.)

3 bytes - aa bb cc:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)
bb - Data payload byte number (base 0).
 (default=0x00)
cc - Bit to be corrupted 0-7 (0=lsb) (default=0x00)

SAINT

Programming Reference 03/03/20 Page 77

Message Corruption (Forced Error) Commands
2Ch C5h Forced Byte Length Error

Simulates a transmission error
where a byte of the message
is transmitted either short one
bit or with an extra bit.
(Applies to any byte of the
message including header
and checksum bytes.)

3-4 bytes aa bb cc dd:
aa - 0x00 = Disabled (default)
 0xnn = Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF = Enabled Continuously (until disabled)
bb - 0x00 = Enable Short byte (7 bit) (default)
 0x01 = Enable Long byte (9 bit)
cc or ccdd - Byte number as a 1 or 2 byte unsigned
 integer (0-259, base 0). (default=0)
Examples:
2C C5 01 00 0B - enabled for 1 msg, short byte error,
 corrupt 13th byte (byte #12 base 0).
2C C5 FF 01 01 03 - always enabled, long byte error,
 corrupt 260th byte (byte 259 base 0)

2Ch C6h

*
Omit Checksum

Note: When enabled, this
overrides commands C7 &
C8 (below).

1 byte - aa:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)

2Ch C7h

*
Forced Checksum Value

Note: When enabled, this
overrides command C8
(below) and is overridden by
command C6 (above).

2 bytes - aa bb:
aa - 0x00=Disabled (default)
 0xnn=Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF=Enabled Continuously (until disabled)
bb - New Checksum value. (default=0x00)

2Ch C8h

*
Force "Good" Checksum
Allows messages containing
"forced" errors to be sent with
or without a checksum error.
Note: This is overridden by
commands C6 &C7 (above).

1 byte:
0x00 - Disabled (default)
 Original msg checksum is used. Checksum is
 not recalculated to include forced error values.
 (will yield a msg checksum error)
0x01 - Enabled
 Checksum recalculated to include the forced
 msg values/errors. (no checksum error)

2Ch C9h

*
Enable/Disable Extra Byte
Transmission after checksum.

2 bytes aa bb:
aa - 0x00 = Disabled (default)
 0xnn = Enabled for nn Tx messages
 (nn=1-254, 01-FE)
 0xFF = Enabled Continuously (until disabled)
bb - Value of extra byte to be transmitted

SAINT

Programming Reference 03/03/20 Page 78

Message Corruption (Forced Error) Commands
2Ch CFh Global Forced Error Control

"Globally" Enables, Disables,
or clears all forced errors.

1 byte:
0x00 - Disabled
 Forced msg errors are globally disabled.
 (Individual Forced Error states are retained)
0x01 - Enabled (default)
 Forced msg errors are globally enabled.
0x02 - Clear All
 Clears the individual enables for all forced
 errors. Forced errors must be individually
 re-enabled after sending this command.
 Global enable/disable is left in its current state
 but will have no effect until errors are
 individually re-enabled.

* - Not Applicable (ignored) in “Direct” Operational Mode (2C A0 02).

Commands Reported by the Saint 2

Hdr ID Description Data Bytes

2Ch 00h Fast Wakeup Pattern
Detected

None
Note: This ONLY reports Wakeup events SENT by
the Saint 2. It does NOT detect or report bus wakeup
events generated by other devices/nodes on the bus.

2Ch 01h Keyword 2000 Timeout/Error

Note: P’x’ timeouts are now
always reported regardless of
the bus init state. (previously
reported only when the bus
was initialized)

As such, it is important to note
that timeouts do not constitute
a definitive indication of the
current or previous init state.

1 byte: Bitfiield
Bit values=0: No error/timeout detected
Bit values=1: (see detail below)

Bit 0 (0x01) - P1 Timeout

Inter byte timeout occurred for ECU (time between
bytes > P1max, 20ms nominal).

Bit 1 (0x02) - P2 Timeout
Timeout occurred between Tester and ECU or two
ECU responses (> P2max, 50ms nominal).

Bit 2 (0x04) - P3 Timeout
Timeout occurred between end of ECU response
and start of Tester (> P3max, 5000ms nominal).

Bit 3 (0x08) - Checksum Error
Checksum error detected in received message.

Bit 4 (0x10) - Arbitration Failure/ Error
Arbitration error detected in transmitted message.

Bit 5 (0x20) - Receive Buffer Overflow Error
Receive buffer overflow error detected while
receiving message.

Bit 6 (0x40) - Receive Framing Error
Framing error detected while receiving message.

Bit 7 (0x80) - P4 Timeout
Inter byte timeout occurred for TESTER (time
between bytes > P4max, 20ms nominal).

SAINT

Programming Reference 03/03/20 Page 79

Commands Reported by the Saint 2
2Ch F0h “Start of Message” Report

When enabled, this report
indicates the start of a KW
Tx/Rx message.

(Disabled as default)
Ref. command “2C B3”, under
“General/Misc. Commands”
for control of this report.

1 Byte: (Message Type)
 00 – Rx Msg Started
 01 – Tx Msg Started

Reported once per message after the first byte of a
message has been sent or received.

Return of a message to the host constitutes an “end of
message” indication. This report provides an
additional indication at the start of a message.

This feature was added primarily for J2534 to support
external protocol timing and control operations but is
available for other uses as appropriate.

Examples:
2D F0 00 - 1st byte of Rx msg received.
2D F0 01 - 1st byte of Tx msg transmitted.

2Ch F1h 5 Baud Key Byte Report

Reports the Key Byte values
received during 5 Baud Init.

(Enabled as default)
Ref. command “2C B4”, under
“General/Misc. Commands”
for control of this report.

2 Bytes: KB1 & KB2

Reported once for each 5 Baud Init event.

This feature was added primarily for J2534 to support
external protocol timing and control operations but is
available for other uses as appropriate.

SAINT

Programming Reference 03/03/20 Page 80

9.3 Keyword 2000 Messages

9.3.1 Transmitted Keyword 2000 Messages

The following is the format for sending a Keyword 2000 message:

Saint

Header

SID (Service ID) N Data Bytes

28h Byte 2 Bytes 3  (2+N)

The above information is used to form one of the following Keyword 2000 messages which is sent onto the

Keyword 2000 bus. The message format depends on the header options configuration (user selected).

1 Byte Header

Format SID N Data Bytes Checksum

Byte 1 Byte 2 Bytes 3 - (2+N) Byte 4 + N

2 Byte Header

Format Length SID N Data Bytes Checksum

Byte 1 Byte 2 Byte 3 Bytes 4 - (3+N) Byte 5 + N

3 Byte Header

Format Target Source SID N Data Bytes Checksum

Byte 1 Byte 2 Byte 3 Byte 4 Bytes 5 - (4+N) Byte 5 + N

4 Byte Header

Format Target Source Length SID N Data Bytes Checksum

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6 - (5+N) Byte 6 + N

Also, the SAINT will check to see if the bus is “initialized” and if necessary will send the Fast initialization

sequence (transmit Wakeup Pattern of 25msec logic low and 25msec logic high followed by a Start

Communications request message 81 11 F1 81 04). Refer to the “Keyword Protocol 2000 Data Link Layer

Recommended Practice” section 5.1.5.3 for more information.

SAINT

Programming Reference 03/03/20 Page 81

9.3.2 Received Keyword 2000 Messages

The following are the 4 possible formats of a received Keyword 2000 message shown with time stamp information

included.

Keyword Header Format = 1 Byte

Header Format SID N Data Bytes Checksum Time MSB Time LSB

29h Byte 2 Byte 3 Bytes 4 - (3+N) Byte 4+N Byte 5+N Byte 6+N

Keyword Header Format = 2 Byte

Header Format Length SID N Data Bytes Checksum Time MSB Time LSB

29h Byte 2 Byte 3 Byte 4 Bytes 5 - (4+N) Byte 5+N Byte 6+N Byte 7+N

Keyword Header Format = 3 Byte

Header Format Target Source SID N Data Bytes Checksum Time MSB Time LSB

29h Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6 - (5+N) Byte 6+N Byte 7+N Byte 8+N

Keyword Header Format = 4 Byte

Header Format Target Source Length SID N Data Bytes Checksum Time MSB Time LSB

29h Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Bytes 7 - (6+N) Byte 7+N Byte 8+N Byte 9+N

9.3.3 Format Byte

The format byte contains a 6-bit length information and a 2-bit address mode information.

Bit 7 Bit 6 Address Information

0 0 no address information

0 1 exception mode (CARB)

1 0 with address information, physical addressing

1 1 with address information, functional addressing

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Length

X X X X X X Define length of message from the Data to Checksum (not

included) bytes. A message length of 1 to 63 bytes is possible. If bits 5-0 are zero then the additional length byte is

included. Refer to the “Keyword Protocol 2000 Data Link Layer Recommended Practice” section 4.1.1 for more

information.

SAINT

Programming Reference 03/03/20 Page 82

9.3.4 Target Address Byte

This is the target address for the message and is always used together with the source address byte. Refer to the

“Keyword Protocol 2000 Data Link Layer Recommended Practice” section 4.1.2 for more information.

9.3.5 Source Address Byte

This is the address of the transmitting device which is a physical address. Refer to the “Keyword Protocol 2000

Data Link Layer Recommended Practice” section 4.1.3 for more information.

9.3.6 Length Byte

This byte is provided if the length in the header byte (bits 0-5) is set to 0. It allows the user to transmit messages

with data fields longer than 63 bytes. With shorter messages it may be omitted. This byte defines the length of a

message from the beginning of the data field (SID included) to the checksum byte (not included). Refer to the

“Keyword Protocol 2000 Data Link Layer Recommended Practice” section 4.1.4 for more information.

9.3.7 Data Bytes

The data field may contain up to 255 bytes. The first byte of the data field is the Service Identification Byte. Refer

to the “Keyword Protocol 2000 Data Link Layer Recommended Practice” section 4.2 for more information.

9.3.8 Checksum Byte

The checksum byte inserted at the end of the message block is defined as the simple 8-bit sum series of all bytes in

the message, excluding the checksum. Refer to the “Keyword Protocol 2000 Data Link Layer Recommended

Practice” section 4.3 for more information.

SAINT

Programming Reference 03/03/20 Page 83

10 SPI (SAINT2 only)

10.1 Serial Peripheral Interface (SPI) Overview

SPI functionality is not provided in the uS3. Support for SPI has not bene released for the S3 Pro.

The SAINT2 supports SPI through a monitor program in which sending messages is not supported. All message traffic

on the bus is “sniffed” and made available to the user. The SPI monitor is limited to baud rates of 400K or less.

The following command may be used to begin monitoring SPI traffic.

Header ID Description Data Bytes

74h 01h Begin SPI Monitor Mode

To exit the SPI Monitor Mode use a hardware reset.

SPI Received Message Format with Time Stamp

71h (SPI IN) N Data Bytes Time Stamp Bytes

byte 1 Byte 2 … Byte N Byte N+1 Byte N+1

73h (SPI OUT) N Data Bytes Time Stamp Bytes

byte 1 Byte 2 … Byte N Byte N+1 Byte N+1

Note: SAINT2 SPI chip select (CS) is active low.

SAINT

Programming Reference 03/03/20 Page 84

10.2 SPI Hardware Connection Diagram

SAINT

Programming Reference 03/03/20 Page 85

11 LIN

LIN functionality is not provided in the uS3. This functionality is not yet available in the S3 Pro.

The Saint 2 LIN implementation provides LIN functionality similar to that provided by the Saint 1. The Saint 2 release

is an enhanced implementation that provides several significant improvements and benefits:

➢ Support for ALL existing LIN versions (up to 2.1) as well as SAE J2602 (US LIN).

➢ Simultaneous Master, Slave, and Bus Monitor support (no re-flash/mode switching).

➢ Stand-alone simulation of a LIN sub bus network (up to 10 slave node/PID responses).

➢ LIN is not currently available for the Saint3.

!!!!! IMPORTANT !!!!!

If using the Saint2, you MUST have hardware “Version 1.1” or higher to use it with LIN.

The hardware version number is listed on the bottom left corner of the front label. If the label does not indicate a

hardware version, it is Version 1.0 hardware and will NOT work properly for LIN.

If you need to use LIN and have an incompatible version of the Saint 2, contact the manufacturer or email support for

upgrade/replacement options.

SAINT

Programming Reference 03/03/20 Page 86

11.1 LIN – Application Notes

1. General Use Information

For Saint2 LIN & KW2000 share the same the same driver H/W and connector pin (PIN

7)

For the Saint2 LIN & KW2000 and are MUTUALLY EXCLUSIVE protocols.

LIN and KW2000 share the same physical interface and are therefore mutually exclusive protocols. Only one of

these protocols may be enabled at a time. Enabling one automatically disables the other. All other supported

protocols can be enabled simultaneously with either LIN or KW but not both. (i.e. CAN & LIN or CAN & KW

can operate at the same time but not CAN & LIN & KW for example)

By default (or after reset) KW is enabled and LIN is disabled. The S2 Configuration Command “08 A3 B8 xx

…” MUST be used to enable LIN (and any other desired protocols) before it can be used. Refer to the SAINT2

Configuration section.

2. Receive Message (frame) Termination & Timestamp Accuracy

LIN Basic does not have access to the PID/frame length information of the “LIN Definition File” (.ldf) to use for

determining when a frame is complete. Therefore, frame completion is determined using timeout, break

detection, and maximum frame length techniques (whichever occurs first). Due to this, the following conditions

apply to timestamp values reported for LIN frames. This should be understood and accounted for by users before

making timing critical judgments based on the timestamp information:

Timestamp values MAY NOT accurately reflect the actual frame time.

Timestamps reported with LIN Frames will normally be longer than the actual frame time (except when

terminated by max frame length).

Timestamps due to timeout or break detection can be greater than actual frame times by up to 40% of the

maximum frame time for a maximum length frame (at the given baud rate).

3. Master Node Emulation Techniques (i.e. Master Schedule Table Emulation)

An actual Master Node sends request/broadcast frames in a deterministic periodic fashion implemented as

“Master Schedule Tables”. Users can, within limitations, emulate Master Schedule Table behavior on the Saint

2 using a couple of different techniques:

SAINT

Programming Reference 03/03/20 Page 87

A) Saint Monitor Periodic Message Feature

The “Periodic Message” feature of the “Saint Monitor” plugin application can be configured to send multiple

messages at individual periodic rates. Multiple periodic message files can be created and saved to allow a

limited form of table switching. (Table switching would be manually controlled). PC to Saint communication

latency can impose some timing inaccuracy which may or may not be of significance depending on the

application. This technique is relatively flexible and would work well for all but the most demanding

applications.

B) Saint Embedded Periodic Message Feature

Periodic message scheduling similar to that of the “Saint Monitor” can be configured and implemented to

execute directly on the Saint 2 hardware (embedded firmware execution). Reference the “SAINT Configuration

Commands” section, commands 0x90 & 0x91 for configuration information.

This method provides the benefit of better timing accuracy but limits the number of messages that can be

configured for periodic transmission.

C) Custom Plugin Development

Users can develop their own custom plugins to allow emulation of their particular Master Node ECU. This

would provide the most complete emulation including creation and full automatic control of schedule tables and

switching. As with the “Saint Monitor” application, this method is also subject to potential timing inaccuracies

due to the PC to Saint communication latencies.

Information and Plugin code templates can be found on the Saint 2 web site.

SAINT

Programming Reference 03/03/20 Page 88

11.2 LIN Commands

The following commands may be transmitted from the host interface to the SAINT 2:

Protocol Configuration Commands

Hdr ID Description Data Bytes

BCh 01h Set LIN Version

For “LIN Basic” this primarily
affects checksum model used:
<= 1.X - “Classic”
>= 2.X - “Enhanced”

(i.e. any value below 2.x
should work for 1.x protocols,
and any value above 1.x
should work for 2.x or J2602
protocols.)

1 byte bitfield: Version as hex (no decimal point)
Bits 0-3: Minor version number
Bits 4-6: Major version number
Bit 7: 0=LIN ver, 1= SAE J2602 ver

Range: 0x10 – 0xFF
Default: 0x21 – LIN 2.1

Examples:
BC 01 13 - set LIN ver 1.3
BC 01 20 - set LIN ver 2.0
BC 01 80 - set SAE J2602 ver 0.0
BC 01 92 - set SAE J2602 ver 1.2

BCh 02h Set Baud Rate

1-2 bytes:
Baud rate in hundreds units expressed in BCD .
Leading zeros are disregarded.
Range: 1k - 20k baud (in 100 baud steps)
Note: Use 104 for 10.4 kBaud, 105 for 10.417
Default = 19200 baud

Examples:
BC 02 02 00 - set baud to 20,000(leading 0's ignored)
BC 02 00 10 - set baud to 1000 (leading 0's ignored)
BC 02 or 2C 02 00 - set default baud rate

BCh 03h Enable/Disable Automatic
Checksum for Master
messages

Controls automatic calculation
and appending of a checksum
to Tx (Master) frames ONLY.
Disabling this allows the user
to send Tx frames with an
omitted or custom checksum
value.

1 byte:
0x00 = Disable
0x01 = Enable (default)

Note: This does NOT affect Rx frames. The checksum
 Is always verified for received (and looped
 back Tx) frames.
Examples:
BC 03 00 - Disable Auto Checksum
BC 03 01 - Enable Auto Checksum

SAINT

Programming Reference 03/03/20 Page 89

BCh 04h Enable/Disable Automatic
Parity ID calculation for
Master messages

Controls automatic calculation
and replacement of PID from
ID. (Master) frames ONLY.
Disabling this allows the user
to send Tx frames with an
incorrect PID to induce parity
errors.

1 byte:
0x00 = Disable
0x01 = Enable (default)

Note: This does NOT affect Rx frames.

Examples:
BC 04 00 - Disable Auto Parity
BC 04 01 - Enable Auto Parity

BCh 05 Set LIN slave response time
as portion of 1/10 of Nominal
response time. Delay is in
steps of 96 uS. 0 to 4 steps
allowed

1 byte:
0x00 = None

Example:
BC 05 04, set response delay to extend overall slave
response to 1.4x nominal

BCh 06 Step LIN interbyte spacing
time as portion of 1/10 of
Nominal response time
applied equally after each of 8
data bytes. Delay is in steps
of 96 uS. 0 to 4 steps allowed

1 byte:
0x00 = None

Example:
BC 06 04, set response delay to extend overall slave
response to 1.4x nominal

SAINT

Programming Reference 03/03/20 Page 90

Slave Signal Table (SST) Configuration Commands

(Slave Emulation)

Hdr ID Description Data Bytes

BCh 10h Add/Modify Slave Emulation
Response

Adds or modifies a Slave
emulation record in the SST
which is used to generate
simulated slave responses to
Master “request” frames.

When a Master “request”
frame PID match is detected,
the content of the matching
record is transmitted as an “in
frame response” to the Master
frame.

NOTE: User is responsible for
avoiding PID conflicts
between the SST and Master
broadcast frames or bus
collisions can result. (The
Saint will transmit a slave
response over the top of a
broadcast message -both
nodes transmitting).

1-10 bytes: PID + Data (1-8) + Checksum (optional)
Minimum content: PID + 1 Data (2 bytes)

The SST holds 10 entries maximum. Commands that
are invalid, illegal, or would violate table size limits will
be discarded/ignored (without notification).

PID: 0x01-0xFE (00&FF reserved for internal use)

Any value within this range (incl. “illegal” PIDs) is
allowed. Unique PIDs are enforced (no duplicates).
If the specified PID already exists, the record is
replaced (modified).

Data: 0x00-0xFF (1-8 bytes)

Checksum: 0x00-0xFF (optional)

Checksums are NOT automatically generated for
emulated slave responses. Inclusion/content is
completely at the users’ discretion allowing full
control of the slave response portion of the frame.
Automatic checksums only apply to master
messages, for error free slave response please
include the checksum. See below for information
on how the checksum is calculated.

Example:
BC 10 C1 01 02 3B - add/modify “C1” PID Response,
3B is the checksum

Result:
B8 C1 (“C1” Master Request)
 01 02 3B (emulated slave response)
B9 C1 01 02 3B 00 (resulting LIN msg frame)

SAINT

Programming Reference 03/03/20 Page 91

BCh 11h Delete SST record 1 byte: PID
0x00 = Illegal, command will be discarded.
0x01-0xFE= Delete specified record (PID)
0xFF= Delete all records in the table.

Examples:
BC 11 C1 – Delete record w/ PID=C1 (if found)
BC 11 FF – Delete ALL records in SST.

BCh 12h Enable/Disable SST record

This command allows the user
to control emulated slave
responses already stored in
the SST.

2 bytes: PID xx

PID:
0x00 = Illegal, command will be discarded.
0x01-0xFE= Apply setting to specified record (PID)
0xFF= Apply setting to all records.

xx:
 0x00 = Disable (default)
 0x01 = Enable

Examples:
BC 12 C1 00 - Disable SST record w/ PID=C1
BC 12 C1 - (same as above – default=disable)
BC 12 C1 01 - Enable SST record w/ PID=C1
BC 12 FF 01 - Enable all records in SST
BC 12 FF - Disable all records in SST

BCh 13h Report SST Config

Reports the current
configuration of the SST as a
list of the populated records.

1 byte: PID

PID:
0x00 = Illegal, command will be discarded.
0x01-0xFE= Report specified record (PID)
0xFF= Report all (populated) records.

Report messages are returned first followed by an
echo of the command message. If no populated
entries are found, only the command echo will be
returned (without report messages).

Response:
1 message for each populated entry (10 max)
BC 13 aa bb cc xx…xx

aa = Record # (01-0A, 1-10dec)
bb = Enable/Disable state (0=disabled,1=enabled)
cc = PID
xx.. = Record Data (including checksum)

Example (assume 2 records populated):
BC 13 FF – Request SST Config (all records).
Result:
BC 13 01 01 C1 01 02 3D
BC 13 09 00 C2 01 02 3E
BC 13 FF – Orig. Command Echo

(Note: The initial command message will follow the
record reports)

SAINT

Programming Reference 03/03/20 Page 92

BCh 14h One-shot Slave Emulation
Response

Adds or modifies a Slave
emulation record in the SST
which is used to generate
simulated slave responses to
Master “request” frames.

When a Master “request”
frame PID match is detected,
the content of the matching
record is transmitted as an “in
frame response” to the Master
frame.

This response is only used
one-time. After the reponse
has been used, the SST
reverts to any previous values
in the SST.

NOTE: User is responsible for
avoiding PID conflicts
between the SST and Master
broadcast frames or bus
collisions can result. (The
Saint will transmit a slave
response over the top of a
broadcast message -both
nodes transmitting).

1-10 bytes: PID + Data (1-8) + Checksum (optional)
Minimum content: PID + 1 Data (2 bytes)

Only one, one-shot PID can be set up at any one time.

PID: 0x01-0xFE (00&FF reserved for internal use)

Any value within this range (incl. “illegal” PIDs) is
allowed. Unique PIDs are enforced (no duplicates).
If the specified PID already exists, the record is
replaced (modified).

Data: 0x00-0xFF (1-8 bytes)

Checksum: 0x00-0xFF (optional)

Checksums are NOT automatically generated for
emulated slave responses. Inclusion/content is
completely at the users’ discretion allowing full
control of the slave response portion of the frame.
Automatic checksums only apply to master
messages, for error free slave response please
include the checksum. See below for information
on how the checksum is calculated.

Example:
BC 14 C1 01 02 3B - add/modify “C1” PID One –shot
Response, 3B is the checksum

Result:
B8 C1 (“C1” Master Request)
 01 02 3B (emulated slave response)
B9 C1 01 02 3B 00 (resulting LIN msg frame)

Next B8 C1, will revert to previous table settings.

Commands Reported by the Saint 2

Hdr ID Description Data Bytes

BCh E0h LIN Error

(Rx msg independent)

1 byte: Same as Rx msg Completion Code
(See the Completion Code detail in the “LIN Received
Messages section)
This is a special error message used to report errors
when an accompanying/associated Rx message is not
available to report the errors (completion code) with.

SAINT

Programming Reference 03/03/20 Page 93

11.3 LIN Messages

11.3.1 Transmitted LIN Messages (Master Frames)

The following is the format for sending a LIN Master message:

Saint

Header

PID (Protected ID) N Data Bytes

(N=0-8)

Checksum

(optional) (1)

B8h Byte 2 Bytes 3  (2+N) Byte N+3

A LIN Master frame is a minimum of 1 byte (PID only = Master Request Frame) and a maximum of 10 bytes (PID

+ data + checksum = Master Broadcast Frame). A properly formatted S2 LIN message will therefore be between 2

– 11 bytes (including the S2 header byte).

Master frames are sent IMMEDIATELY and will be transmitted on the bus regardless of any current receive

activity (i.e. potential collision conditions). This is intentional behavior and in keeping with the LIN specifications

and philosophy that the Master Node always has priority and can pre-empt any bus activity. It is the users’

responsibility to manage bus traffic and schedule message flow appropriately.

Notes:

(1) User provided checksum is optional. Inclusion is dependent on user intent AND the configured state of

the “Automatic Checksum” feature. If Automatic Checksum is enabled, a user checksum should NOT

be included (as one will be automatically calculated and appended by the firmware). If Automatic

Checksum is disabled, inclusion of the user checksum is optional. This mode allows the user to send a

Master frame with an omitted, corrupted, or valid checksum value as desired (useful for

error/robustness testing.)

(2) In firmware version 4.17.4 and later, the Tx bit in the header is set whenever the Saint acts as the

master.

SAINT

Programming Reference 03/03/20 Page 94

11.3.2 Received LIN Messages (frames)

The following is the format of a received LIN message (shown with time stamp information included):

Header PID N Data Bytes Checksum Completion

Code

Time

MSB

Time LSB

B9h Byte 2 Bytes 3 - (2+N) Byte 3+N Byte 4+N Byte 5+N Byte 6+N

11.3.3 PID Byte

The “Protected Identifier” byte consists of the Frame ID (bits 0-5) and Parity fields (bits 6-7). Refer to the

applicable LIN (LIN Consortium) or J2602 (SAE)specifications for more information.

11.3.4 Data Bytes

The data field may contain from 0 to 8 bytes. When supplied by the Master Node, the message constitutes a

“Broadcast” message (for Slave Node consumption). When not supplied by the Master Node (PID only), the

message constitutes a “Master Request” message (Slave Node response expected). Refer to the applicable LIN

(LIN Consortium) or J2602 (SAE)specifications for more information

11.3.5 Checksum Byte

The checksum is calculated by adding each byte value and adding any carry to the 8 bit result. The final result is

inverted. Two different checksum models are used depending on the LIN/J2602 version being used as follows:

Checksum Model Checksum Bytes LIN Version

Classic Data (only) LIN 1.X

Enhanced PID & Data LIN 2.X & J2602

Classic Example:

12 A0 B8

A0 + B8 = 158

1 + 58 = 59

NOT 59 = A6

Enhanced Example:

12 A0 B8

12 + A0 + B8 = 16A

1 + 6A = 6B

NOT 59 = 94

Tip: Too easily compute the checksum to include when setting up the slave table, simply send the message as a

Master message. If auto-checksum is enabled, the Saint will automatically append the checksum to the message.

Refer to the applicable LIN (LIN Consortium) or J2602 (SAE)specifications for more information.

SAINT

Programming Reference 03/03/20 Page 95

11.3.6 Completion Code (Frame Error) Byte

This byte is a bitfield indicating any errors detected by the Saint 2 firmware for the associated LIN message

(frame). In certain cases, errors can occur without producing an Rx message to report the errors with. In this

scenario, the errors (completion code) are reported to the user as an independent error message “BC E0 xx”

(described earlier in the “LIN Commands” section).

Completion Code Bitfield Definition

7 (MSb) 6 5 4 3 2 1 0 (LSb)

Overflow Framing LoopBack Brk/Sync Parity Checksum Tframe SNR

The following provides additional detail regarding each of these errors:

LIN Completion Code/Error Bitfield Detail:

Bit 0 (0x01) – Slave Not Responding Timeout

 0 No timeout detected.

 1 Slave node(s) did not respond within the allotted time (40% of max frame time @ given baud).

Bit 1 (0x02) – Tframe Error

 0 No error detected

 1 LIN frame was not completed within the max allowable time (frame slot time exceeded).

Bit 2 (0x04) – Checksum Error

 0 No error detected.

 1 Checksum error detected in the LIN message.

Bit 3 (0x08) - Parity Error

 0 No error detected.

 1 PID parity error detected in the LIN message.

Bit 4 (0x10) – Break/Sync Error

 0 No error detected.

 1 Missing or inconsistent Break and/or Sync bytes detected.

Bit 5 (0x20) – LoopBack Error (AKA Data Error)

 0 No error detected.

 1 Received (loopback) byte did not match transmitted byte during LIN message transmission.

Bit 6 (0x40) - Receive Framing Error

 0 No error detected.

 1 Framing error detected in the LIN message.

Bit 7 (0x80) - Receive Buffer Overflow Error

 0 No error detected.

 1 Receive buffer overflow error detected while receiving LIN message.

SAINT

Programming Reference 03/03/20 Page 96

12 Block Transfer

The Block Transfer messages (SAINT header $F8) can be used to transfer large blocks of data between the host PC and

certain protocols running in the SAINT firmware.

Maximum Block Transfer message size = 4K bytes (0xFFF)

Protocols that support block transfer:

Class 2 ($60) – block transmit and block receive supported

ISO15765-2 1($C0) – block transmit supported, block receive is not supported (see ISO15675-2 section for details)

ISO15765-2 2($C8) – block transmit supported, block receive is not supported (see ISO15675-2 section for details)

12.1 Using Block Transfer with the SAINT Bus Engine

If your plug-in is using the SAINT Bus Engine to communicate with the SAINT you do not need any special formatting

to send your block message. You simply need to send the SAINT header byte for your protocol followed by the entire

block message.

12.2 Using Block Transfer without the SAINT Bus Engine

If your application does not use the SAINT Bus Engine to communicate with the SAINT you must use the following

special formatting to send or receive your block message. A single block message must be broken up into a series of $F8

messages. Also, the messages must be constructed using the SAINT

Maximum $F8 message size = 56 bytes (including $F8 header byte, $HH and $ YY YY below)

$F8 HH YY YY XX XX XX….

where $F8 is the SAINT header for block message transfers

 $HH is the SAINT header for the protocol (i.e. $60 for Class 2, $C0 for ISO15765-2 1)

$YY YY is the incrementing message counter. Bits 0-14 are $0000 for the first message and increment by 1

for each subsequent message. Bit 15 = 1 in the last message of the series of messages.

$XX XX XX… is the serial message (up to 52 bytes)

Example: Transmit the following 170 data byte ISO15765-2 message $123 DB1 DB2 … DB170

$F8 C0 00 00 01 23 DB1 DB2 DB3 DB4 … DB54

$F8 C0 00 01 DB55 DB56 DB57 … DB110

$F8 C0 00 02 DB111 DB112 DB113 … DB166

$F8 C0 80 03 DB167 DB168 DB169 DB170

SAINT

Programming Reference 03/03/20 Page 97

Also note that each message must be constructed using the SAINT2 FF and FF 00 escape characters. See the SAINT

Message Format section for more details.

Class2 Example:

Users wants to transmit the following 140 byte Class2 block mode message:

60 6D 99 F0 36 00 00 80 00 F6 86 79 9F AC 00 84 05 AA 03 00

00 0E C7 14 C7 12 C7 80 81 C0 00 00 C0 00 00 FF CF 00 00 00

F6 00 00 FF FD 00 00 00 00 E0 00 FF 07 E0 00 00 40 C0 00 FF

45 C0 00 00 60 C0 00 FF FF C0 00 00 00 C1 00 FF FF C1 00 01

02 03 04 05 06 10 11 12 13 14 15 16 17 18 19 1A 1B 1C FF 9C

8C 9C 8C 9C 8C 9C 8C 9C 8C 88 8E C0 00 A0 8E C0 00 B4 8E C0

00 01 02 00 C7 C7 02 00 C7 01 C7 00 02 1A 90 C0 00 5A 8F 2F

1F

The Saint Bus Engine will actually break this message up into three different packets for USB transfer. Reminder: If you

are bypassing the SBE you will need to account for the FF and FF 00 escape sequences.

F8 60 00 00 6D 99 F0 36 00 00 80 00 F6 86 79 9F AC 00 84 05

AA 03 00 00 0E C7 14 C7 12 C7 80 81 C0 00 00 C0 00 00 FF CF

00 00 00 F6 00 00 FF FD 00 00 00 00 E0 00 FF 07

F8 60 00 01 E0 00 00 40 C0 00 FF 45 C0 00 00 60 C0 00 FF FF

C0 00 00 00 C1 00 FF FF C1 00 01 02 03 04 05 06 10 11 12 13

14 15 16 17 18 19 1A 1B 1C FF 9C 8C 9C 8C 9C 8C

F8 60 80 02 9C 8C 9C 8C 88 8E C0 00 A0 8E C0 00 B4 8E C0 00

01 02 00 C7 C7 02 00 C7 01 C7 00 02 1A 90 C0 00 5A 8F 2F 1F

SAINT

Programming Reference 03/03/20 Page 98

13 SAINT Gateway Functions

The SAINT supports several standalone gateway modes. In a gateway mode, the SAINT operates as a translator between

two serial buses without any interface from a PC.

➢ An SD card is used to configure the SAINT to act as a stand-alone gateway.

➢ The gateway configuration file must be named CONFIG.TXT.

➢ Not currently implemented in the Saint3.

13.1 CAN1/CAN2 Bidirectional Gateway

The CAN1/CAN2 gateway is a gateway between the CAN1 channel and the CAN2 channel. The SAINT can translate

between supported baud rates and CAN transceivers. Any CAN frames received on CAN 1 are re-transmitted with the

same message ID and data onto CAN 2. Also, any CAN frames received on CAN 2 are re-transmitted with the same

message ID and data onto CAN 1. The CONFIG.TXT file should look like this:

begin

gateway

cangateway

header1: 50

header2: 58

group file: cancnfg.grp

end

where the groupfile cancnfg.grp configures the CAN channels’ baud rates, CAN transceivers, and options. An example

of cancnfg.grp might be

0010 54 04 00

0010 54 01 C9 39

0010 5C 04 01

0010 5C 01 F1 39

Where CAN 1 ($54) is configured to high speed CAN at 500K baud, and CAN 2 ($5C) is configured to fault tolerant

CAN at 100K baud.

Important Notes:

➢ At some level of bus utilization, a slower baud rate channel is not going to be able to keep up with traffic on a

higher baud rate channel. Messages may be lost. If this is critical, pay attention to the operation warning LED

#5.

➢ If you are monitoring the bus with the SAINT being used as a gateway, you will not see the received CAN

frames but you will the see the frames that are re-transmitted.

13.2 CAN1 to CAN2 One-way Gateway

The CAN1/CAN2 gateway is a gateway between the CAN1 channel and the CAN2 channel. The SAINT can translate

between supported baud rates and CAN transceivers. Any CAN frames received on CAN 1 are re-transmitted with the

SAINT

Programming Reference 03/03/20 Page 99

same message ID and data onto CAN 2. Any CAN frames received on CAN 2 are NOT re-transmitted. The

CONFIG.TXT file should look like this:

begin

gateway

oneway

header1: 50

header2: 58

group file: cancnfg.grp

end

where the groupfile cancnfg.grp configures the CAN channels’ baud rates, CAN transceivers, and options. An example

of cancnfg.grp might be

0010 54 04 00

0010 54 01 C9 39

0010 5C 04 01

0010 5C 01 F1 39

Where CAN 1 ($54) is configured to high speed CAN at 500K baud, and CAN 2 ($5C) is configured to fault tolerant

CAN at 100K baud.

Important Notes:

➢ At some level of bus utilization, a slower baud rate channel is not going to be able to keep up with traffic on a

higher baud rate channel. Messages may be lost. If this is critical, pay attention to the operation warning LED

#5.

➢ If you are monitoring the bus with the SAINT being used as a gateway, you will not see the received CAN

frames but you will the see the frames that are re-transmitted.

13.3 RS232/CAN Gateway

The RS232/CAN Gateway is a gateway between RS232 and the specified CAN channel. In this mode, the SAINT can be

used to monitor CAN traffic using the PC application Hyperterminal. When any CAN frame (i.e. any CAN ID) is

received on the specified CAN channel, the first data byte in the frame is retransmitted as a single byte over the RS232

connection. When a byte is received over RS232, a CAN frame is constructed with the specified message ID (0x001) and

the RS232 byte of data and is re-transmitted over the specified CAN channel. The CONFIG.TXT should look like this

begin

gateway

can11bit ; or “can29bit”

can_id: 0x001 ; can id from hyperterminal to CAN

header1: 0x50

header2: 0x80

group file: cancnfg.grp

end

where cancnfg.grp is the groupfile that configures the CAN channel.

SAINT

Programming Reference 03/03/20 Page 100

Important Notes:

➢ CAN has the potential to be much faster than RS232. The CAN device connected to the gateway must regulate

the CAN traffic so it does not overrun the RS232 channel.

➢ header1 must be the CAN channel and header 2 must be the RS232 channel ($80).

13.4 X/Y Gateway

The X/Y gateway is a gateway between any two channels that can run concurrently. The X/Y gateway simply takes the

raw bytes received on protocol X and retransmits on protocol Y. Also, in the reverse, anything received on protocol Y is

retransmitted on protocol X. The keyword “cangateway” is still used regardless of the X and Y protocols. Please be

aware that this Gateway feature is effectively simply retransmitting the received header byte for protocol X with the

header byte for Protocol Y (and vice versa).

begin

gateway

cangateway

header1: 0x50

header2: 0x60

group file: config.grp

end

where the goupfile config.grp configures the protocol channels if needed.

Important Notes:

➢ At some level of bus utilization, a slower baud rate channel is not going to be able to keep up with traffic on a

higher baud rate channel. Messages may be lost. If this is critical, pay attention to the operation warning LED

#5.

➢ If you are monitoring the bus with the SAINT being used as a gateway, you will not see the received frames but

you will the see the frames that are re-transmitted.

SAINT

Programming Reference 03/03/20 Page 101

14 Connectors

The SAINT uses 3 connectors. The first connector is a USB connector. The second connector is for the RS-232 link and

is DB9F. The third connector is a DB25F for the serial bus, power and ground connections. The following pin outs are

used:

14.1 USB Connector

Uses USB Type A connector on host PC and Type B connector on Saint 2.

14.2 RS-232 Connector

A straight pass cable should be used to connect the SAINT to the host computer.

DB9F Pin # Use

2 TX to Host

3 RX from Host

8 CTS

6 DSR

5 GND

SAINT

Programming Reference 03/03/20 Page 102

14.3 SAINT CABLE

14.3.1 Saint2 v1.0, v1.1

DB25F Pin # Use

1 SWCAN1

2 FT_2_H

3 VBATT

4 TRIGIN

5 SWCAN2

6 BarTC2

7 KEYWORD

8 CAN_1_H

9 CAN_1_L

10 BArT_CANH

11 BArT_CANL

12 BArT_SW

13 FT_2_L

14 CLASS2

15 ACP_B

16 BEAN1

17 BEAN2

18 Do not connect a wire to this pin

19 Do not connect a wire to this pin

20 Do not connect a wire to this pin

21 Do not connect a wire to this pin

22 SPI_INT

23 GND

24 TRIGOUT

25 ACP_A

SAINT

Programming Reference 03/03/20 Page 103

14.3.2 Saint2 v1.2

DB25F Pin # Use

1 SWCAN1

2 FT_2_H

3 VBATT

4 TRIGIN

5 SWCAN2

6 DB4

7 KEYWORD

8 CAN_1_H

9 CAN_1_L

10 CAN_2_H

11 CAN_2_L

12 BArT_SW

13 FT_2_L

14 CLASS2

15 IIC_CLK

16 FT_1_H

17 FT_1_L

18 DB1

19 DB2

20 DB3

21 IIC_DATA

22 TRIGIN2

23 GND

24 TRIGOUT

25 TRIGOUT2

SAINT

Programming Reference 03/03/20 Page 104

14.3.3 Saint3 Pro

DB25F Pin # Use

1 SWCAN1

2 FT_2_H

3 VBATT

4 TRIGIN 1

5 SWCAN2

6 DB4

7 KEYWORD

8 CAN/CANFD_1_H

9 CAN/CANFD_1_L

10 CAN/CANFD_2_H

11 CAN/CANFD_2_L

12 Spare

13 FT_2_L

14 LIN

15 IIC_CLK

16 FT_1_H

17 FT_1_L

18 DB1

19 DB2

20 DB3

21 IIC_DATA

22 TRIGIN2

23 GND

24 TRIGOUT1

25 TRIGOUT2

SAINT

Programming Reference 03/03/20 Page 105

14.3.4 Mirco Saint3

DB9F Pin # Use

1 N/C

2 CAN/CANFD_1L

3 GND

4 CAN/CANFD_2L

5 N/C

6 GND

7 CAN/CANFD_1H

8 CAN/CANFD_2H

9 N/C

SAINT

Programming Reference 03/03/20 Page 106

15 LEDs

Six LEDs are used by the SAINT. These LEDs are:

LED # Purpose

6 Not Used

5 Operation Warning Code Set In Firmware (Use 08h A1h to Retrieve)

If flashing at 1 Hz then you are in IIC Monitor Mode

4 Access SD Card

3 Not Used

2 Sending Message(s) To Host

1(PWR) Toggle – Power On & System In Normal Operation

15.1 Reset Button - Manual Reset

Reset button is the manual reset switch. Pressing this switch will cause SAINT microprocessor software reset - start

executing the embedded code from boot block.

